skip to main content


Title: The evidence for anthocyanins in the betalain-pigmented genus Hylocereus is weak
Abstract Here we respond to Zhou (BMC Genomics 21:734, 2020) “Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying peel and pulp color formation” published in BMC Genomics. Given the evolutionary conserved anthocyanin biosynthesis pathway in betalain-pigmented species, we are open to the idea that species with both anthocyanins and betalains might exist. However, in absence of LC-MS/MS spectra, apparent lack of biological replicates, and no comparison to authentic standards, the findings of Zhou (BMC Genomics 21:734, 2020) are not a strong basis to propose the presence of anthocyanins in betalain-pigmented pitaya. In addition, our re-analysis of the datasets indicates the misidentification of important genes and the omission of key flavonoid and anthocyanin synthesis genes ANS and DFR. Finally, our re-analysis of the RNA-Seq dataset reveals no correlation between anthocyanin biosynthesis gene expression and pigment status.  more » « less
Award ID(s):
1939226
NSF-PAR ID:
10401879
Author(s) / Creator(s):
;
Date Published:
Journal Name:
BMC Genomics
Volume:
23
Issue:
1
ISSN:
1471-2164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Here we respond to the paper entitled “ Contribution of anthocyanin pathways to fruit flesh coloration in pitayas ” (Fan et al., BMC Plant Biol 20:361, 2020). In this paper Fan et al. 2020 propose that the anthocyanins can be detected in the betalain-pigmented genus Hylocereus , and suggest they are responsible for the colouration of the fruit flesh. We are open to the idea that, given the evolutionary maintenance of fully functional anthocyanin synthesis genes in betalain-pigmented species, anthocyanin pigmentation might co-occur with betalain pigments, as yet undetected, in some species. However, in absence of the LC-MS/MS spectra and co-elution/fragmentation of the authentic standard comparison, the findings of Fan et al. 2020 are not credible. Furthermore, our close examination of the paper, and re-analysis of datasets that have been made available, indicate numerous additional problems. Namely, the failure to detect betalains in an untargeted metabolite analysis, accumulation of reported anthocyanins that does not correlate with the colour of the fruit, absence of key anthocyanin synthesis genes from qPCR data, likely mis-identification of key anthocyanin genes, unreproducible patterns of correlated RNAseq data, lack of gene expression correlation with pigmentation accumulation, and putative transcription factors that are weak candidates for transcriptional up-regulation of the anthocyanin pathway. 
    more » « less
  2. Summary

    In this study, we investigate the genetic mechanisms responsible for the loss of anthocyanins in betalain‐pigmented Caryophyllales, considering our hypothesis of multiple transitions to betalain pigmentation.

    Utilizing transcriptomic and genomic datasets across 357 species and 31 families, we scrutinize 18 flavonoid pathway genes and six regulatory genes spanning four transitions to betalain pigmentation. We examined evidence for hypotheses of wholesale gene loss, modified gene function, altered gene expression, and degeneration of the MBW (MYB‐bHLH‐WD40) trasnscription factor complex, within betalain‐pigmented lineages.

    Our analyses reveal that most flavonoid synthesis genes remain conserved in betalain‐pigmented lineages, with the notable exception ofTT19orthologs, essential for the final step in anthocyanidin synthesis, which appear to have been repeatedly and entirely lost. Additional late‐stage flavonoid pathway genes upstream ofTT19also manifest strikingly reduced expression in betalain‐pigmented species. Additionally, we find repeated loss and alteration in the MBW transcription complex essential for canonical anthocyanin synthesis.

    Consequently, the loss and exclusion of anthocyanins in betalain‐pigmented species appear to be orchestrated through several mechanisms: loss of a key enzyme, downregulation of synthesis genes, and degeneration of regulatory complexes. These changes have occurred iteratively in Caryophyllales, often coinciding with evolutionary transitions to betalain pigmentation.

     
    more » « less
  3. Summary

    The evolution oflDOPA4,5‐dioxygenase activity, encoded by the geneDODA, was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed thatlDOPA4,5‐dioxygenase activity evolved via a single Caryophyllales‐specific neofunctionalisation event within theDODAgene lineage. However, this neofunctionalisation event has not been confirmed and theDODAgene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear.

    To address this, we functionally characterised 23 distinctDODAproteins forlDOPA4,5‐dioxygenase activity, from four betalain‐pigmented and five anthocyanin‐pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updatedDODAphylogeny, we then explored the evolution oflDOPA4,5‐dioxygenase activity.

    We find that lowlDOPA4,5‐dioxygenase activity is distributed across theDODAgene lineage. In this context, repeated gene duplication events within theDODAgene lineage give rise to polyphyletic occurrences of elevatedlDOPA4,5‐dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro‐synteny.

    In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevatedlDOPA4,5‐dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales.

     
    more » « less
  4. Abstract The R2R3-MYB transcription factor FveMYB10 is a major regulator of anthocyanin pigmentation in the red strawberry fruits. fvemyb10 loss-of-function mutants form yellow fruits but still accumulate purple-colored anthocyanins in the petioles, suggesting that anthocyanin biosynthesis is under distinct regulation in fruits and petioles. We identified a green petioles (gp)-1 mutant from chemical mutagenesis in the diploid wild strawberry Fragaria vesca that lacks anthocyanins in petioles. Using mapping-by-sequencing and transient functional assays, we confirmed that the causative mutation resides in a FveMYB10-Like (MYB10L) gene and that FveMYB10 and FveMYB10L function independently in the fruit and petiole respectively. In addition to their tissue-specific regulation, FveMYB10 and FveMYB10L respond differently to changes in light quality, produce distinct anthocyanin compositions, and preferentially activate different downstream anthocyanin biosynthesis genes in their respective tissues. This work identifies a new regulator of anthocyanin synthesis and demonstrates that two paralogous MYB genes with specialized functions enable tissue-specific regulation of anthocyanin biosynthesis in fruit and petiole tissues. 
    more » « less
  5. Abstract

    In agriculture, plant growth promoting bacteria (PGPB) are increasingly used for reducing environmental stress‐related crop losses through mutualistic actions of these microorganisms, activating physiological and biochemical responses, building tolerances within their hosts. Here we report the use of radioactive carbon‐11 (t½20.4 min) to examine the metabolic and physiological responses ofZea maystoAzospirillum brasilense(HM053) inoculation while plants were subjected to salinity and low nitrogen stresses. Host metabolism of “new” carbon resources (as11C) and physiology including [11C]‐photosynthate translocation were measured in response to imposed growth conditions. Salinity stress caused shortened, dense root growth with a 6‐fold increase in foliar [11C]‐raffinose, a potent osmolyte. ICP‐MS analyses revealed increased foliar Na+levels at the expense of K+. HM053 inoculation relieved these effects, reinstating normal root growth, lowering [11C]‐raffinose levels while increasing [11C]‐sucrose and its translocation to the roots. Na+levels remained elevated with inoculation, but K+levels were boosted slightly. Low nitrogen stress yielded longer roots possessing high levels of anthocyanins. Metabolic analysis revealed significant shifts in “new” carbon partitioning into the amino acid pool under low nitrogen stress, with significant increases in foliar [11C]‐glutamate, [11C]‐aspartate, and [11C]‐asparagine, a noted osmoprotectant.11CO2fixation and [11C]‐photosynthate translocation also decreased, limiting carbon supply to roots. However, starch levels in roots were reduced under nitrogen limitation, suggesting that carbon repartitioning could be a compensatory action to support root growth. Finally, inoculation with HM053 re‐instated normal root growth, reduced anthocyanin, boosted root starch, and returned11C‐allocation levels back to those of unstressed plants.

     
    more » « less