skip to main content


Title: Deployable linear and spiral array structures based on a Kresling-inspired mechanism with integrated scissor arms

Recent developments have shown that spatial structures devised from origami or low-dimensional rigid linkage mechanisms can be used to construct deployable arrays for antennas or satellites. Yet, some of these structures are limited to deployment in fixed planes or directions, or do not define straightforward processes for deployment. To surmount these limitations, this research introduces a reconfigurable single-degree-of-freedom spatial structure devised from a Kresling-inspired mechanism with integrated scissor arms. Analytical models are constructed to demonstrate compaction, deployment, and acoustic wave guiding capabilities of the proposed, modular structure. The influences of the geometric parameters on compaction, deployment, and scissor arm orientation are also explored, and reveal modular scissor arm behavior and large deployment-to-compaction area ratios. The acoustic wave guiding capabilities of the Kresling-inspired scissor structure are exemplified via a structure using spiral scissor arms, thereby proposing a novel concept for the construction of deployable wave guiding arrays. Experimental studies with model arrays complement the analytical findings of both the geometric reconfigurations and wave guiding functionality. Finally, out-of-plane configurations are depicted to demonstrate the three-dimensional shape change capabilities of the Kresling-inspired scissor structure. The results in this study encourage broader exploration of the interfaces between origami inspired structures and rigid linkage mechanisms.

 
more » « less
NSF-PAR ID:
10401965
Author(s) / Creator(s):
 ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Journal of Intelligent Material Systems and Structures
Volume:
34
Issue:
16
ISSN:
1045-389X
Page Range / eLocation ID:
p. 1917-1931
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent studies have shown that reconfigurable acoustic arrays inspired from rigid origami structures can be used to radiate and focus acoustic waves. Yet, there is a need for exploration of single-degree-of-freedom deployment to be integrated with such arrays for sake of tailoring wave focusing. This research explores a reconfigurable acoustic array inspired from a regular Miura-ori unit cell and threefold-symmetric Bricard linkage. The system focuses on acoustic waves and has single-degree-of-freedom motion when incorporated with a modified threefold-symmetric Bricard linkage. Three configurations of the array are analyzed where array facets that converge towards the center axis are considered to vibrate like baffled pistons and generate acoustic waves into the surrounding fluid. An analytical model is constructed to explore the near-field acoustic focusing behavior of the proposed acoustic array. The wave focusing capabilities of the array are verified through proof-of-principle experiments. The results show that the wave focusing of the array is influenced by the geometric parameters of the facets and the relative distance of facets to the center axis, in agreement with simplified ray acoustics estimates. These findings underscore the fundamental relationship between focusing sound radiators and geometric acoustics principles. The results encourage broader exploration of acoustic array designs inspired from integrated single-degree-of-freedom linkages and origami structures for sake of straightforward array deployment and reconfiguration. 
    more » « less
  2. null (Ed.)
    Abstract Curved surfaces are often used to radiate and focus acoustic waves. Yet, when tessellated into reconfigurable surfaces for sake of deployability needs, origami-inspired acoustic arrays may be challenging to hold into curved shape and may not retain flat foldability. On the other hand, deployable mechanisms such as the Hoberman ring are as low-dimensional as many origami tessellations and may maintain curved shape with ease due to ideal rigid bar compositions. This research explores an interface between a Hoberman ring and Miura-ori tessellation that maintain kinematic and geometric compatibility for sake of maintaining curved shapes for sound focusing. The Miura-ori facets are considered to vibrate like baffled pistons and generate acoustic waves that radiate from the ring structure. An analytical model is built to reveal the near field acoustic behavior of acoustic arrays resulting from a Hoberman–Miura system synthesis. Acoustic wave focusing capability is scrutinized and validated through proof-of-principle experiments. Studies reveal wave focusing phenomena distinct to this manifestation of the acoustic array and uncover design and operational influences on wave focusing effectiveness. The results encourage exploration of new interfaces between reconfigurable mechanisms and origami devices where low-dimensional shape change is desired. 
    more » « less
  3. Origami designs have attracted significant attention from researchers seeking to develop new types of deployable structures due to their ability to undergo large and complex yet predictable shape changes. The Kresling pattern, which is based on a natural accumulation of folds and creases during the twistbuckling of a thin-walled cylinder, offers a great example for the design of deployable systems that expand uniaxially into tubes or booms. However, much remains to be understood regarding the characteristics of Kresling-based deployable systems, and their dynamics during the deployment process remain largely unexplored. Hence this research investigates the deployment of Kresling origami-inspired structures, employing a full sixdegree- of-freedom truss-based model to study their dynamics under different conditions. Results show that tuning the initial rotation angle of a structure gives rise to several qualitatively distinct mechanical properties and stability characteristics, each of which has different implications for the design of the deployable systems. Dynamic analyses reveal the robustness of Kresling structures to out-of-axis perturbations while remaining compliant in the axial direction. These findings suggest that Kresling-based designs can form the basis for the development of new types of deployable structures and systems with tunable performance. 
    more » « less
  4. Recent studies have exemplified the potential for curved origami-inspired acoustic arrays to focus waves. Yet, reconfigurable structures that adopt curvatures are often difficult to translate to practice due to mechanical deformation of the facets that inhibit straightforward folding. In addition, not all tessellations that curve upon folding are also flat-foldable, which is a key advantage of portability inherent to many origami-inspired structures. This research introduces a new concept of partially activated reconfigurable acoustic arrays as a means to mitigate these drawbacks. Here, tessellations are studied where a subset of the facet surfaces are considered to radiate acoustic waves. The analytical results reveal focusing behaviors in such arrays that are otherwise not manifest for the array when fully activated. The focused waves are more intense in amplitude and space for partially activated arrays than fully activated counterparts. These trends are verified by experiment and are also found to be applicable to multiple reconfigurable array geometries. The results encourage broader study of the design space accessible in reconfigurable arrays to capitalize on all of the functionality afforded by origami-inspired wave guiding structures. 
    more » « less
  5. Inspired by the embodied intelligence observed in octopus arms, we introduce magnetically controlled origami robotic arms based on Kresling patterns for multimodal deformations, including stretching, folding, omnidirectional bending, and twisting. The highly integrated motion of the robotic arms is attributed to inherent features of the reconfigurable Kresling unit, whose controllable bistable deploying/folding and omnidirectional bending are achieved through precise magnetic actuation. We investigate single- and multiple-unit robotic systems, the latter exhibiting higher biomimetic resemblance to octopus’ arms. We start from the single Kresling unit to delineate the working mechanism of the magnetic actuation for deploying/folding and bending. The two-unit Kresling assembly demonstrates the basic integrated motion that combines omnidirectional bending with deploying. The four-unit Kresling assembly constitutes a robotic arm with a larger omnidirectional bending angle and stretchability. With the foundation of the basic integrated motion, scalability of Kresling assemblies is demonstrated through distributed magnetic actuation of double-digit number of units, which enables robotic arms with sophisticated motions, such as continuous stretching and contracting, reconfigurable bending, and multiaxis twisting. Such complex motions allow for functions mimicking octopus arms that grasp and manipulate objects. The Kresling robotic arm with noncontact actuation provides a distinctive mechanism for applications that require synergistic robotic motions for navigation, sensing, and interaction with objects in environments with limited or constrained access. Based on small-scale Kresling robotic arms, miniaturized medical devices, such as tubes and catheters, can be developed in conjunction with endoscopy, intubation, and catheterization procedures using functionalities of object manipulation and motion under remote control. 
    more » « less