skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrical Interrogation of Thickness‐Dependent Multiferroic Phase Transitions in the 2D Antiferromagnetic Semiconductor NiI 2
Abstract 2D magnetic materials hold promise for quantum and spintronic applications. 2D antiferromagnetic materials are of particular interest due to their relative insensitivity to external magnetic fields and higher switching speeds compared to 2D ferromagnets. However, their lack of macroscopic magnetization impedes detection and control of antiferromagnetic order, thus motivating magneto‐electrical measurements for these purposes. Additionally, many 2D magnetic materials are ambient‐reactive and electrically insulating or highly resistive below their magnetic ordering temperatures, which imposes severe constraints on electronic device fabrication and characterization. Herein, these issues are overcome via a fabrication protocol that achieves electrically conductive devices from the ambient‐reactive 2D antiferromagnetic semiconductor NiI2. The resulting gate‐tunable transistors show band‐like electronic transport below the antiferromagnetic and multiferroic transition temperatures of NiI2, revealing a Hall mobility of 15 cm2 V−1 s−1at 1.7 K. These devices also allow direct electrical probing of the thickness‐dependent multiferroic phase transition temperature of NiI2from 59 K (bulk) to 28 K (monolayer).  more » « less
Award ID(s):
2004420
PAR ID:
10401974
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
33
Issue:
12
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two‐dimensional (2D) antiferromagnetic (AFM) semiconductors are promising components of opto‐spintronic devices due to terahertz operation frequencies and minimal interactions with stray fields. However, the lack of net magnetization significantly limits the number of experimental techniques available to study the relationship between magnetic order and semiconducting properties. Here, they demonstrate conditions under which photocurrent spectroscopy can be employed to study many‐body magnetic excitons in the 2D AFM semiconductor NiI2. The use of photocurrent spectroscopy enables the detection of optically dark magnetic excitons down to bilayer thickness, revealing a high degree of linear polarization that is coupled to the underlying helical AFM order of NiI2. In addition to probing the coupling between magnetic order and dark excitons, this work provides strong evidence for the multiferroicity of NiI2down to bilayer thickness, thus demonstrating the utility of photocurrent spectroscopy for revealing subtle opto‐spintronic phenomena in the atomically thin limit. 
    more » « less
  2. Abstract Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. Taking advantage of these strengths, this paper reports on NV‐based local sensing of the electrically driven insulator‐to‐metal transition (IMT) in a proximal Mott insulator. The resistive switching properties of both pristine and ion‐irradiated VO2thin film devices are studied by performing optically detected NV electron spin resonance measurements. These measurements probe thelocaltemperature and magnetic field in electrically biased VO2devices, which are in agreement with theglobaltransport measurement results. In pristine devices, the electrically driven IMT proceeds through Joule heating up to the transition temperature while in ion‐irradiated devices, the transition occurs nonthermally, well below the transition temperature. The results provide direct evidence for nonthermal electrically induced IMT in a Mott insulator, highlighting the significant opportunities offered by NV quantum sensors in exploring nanoscale thermal and electrical behaviors in Mott materials. 
    more » « less
  3. Abstract Recent advances in 2D magnetism have heightened interest in layered magnetic materials due to their potential for spintronics. In particular, layered semiconducting antiferromagnets exhibit intriguing low‐dimensional semiconducting behavior with both charge and spin as carrier controls. However, synthesis of these compounds is challenging and remains rare. Here, first‐principles based high‐throughput search is conducted to screen potentially stable mixed metal phosphorous trichalcogenides (MMP2X6, where M and Mare transition metals and X is a chalcogenide) that have a wide range of tunable bandgaps and interesting magnetic properties. Among the potential candidates, a stable semiconducting layered magnetic material, CdFeP2Se6, that exhibits a short‐range antiferromagnetic order atTN = 21 K with an indirect bandgap of 2.23 eV is successfully synthesized . This work suggests that high‐throughput screening assisted synthesis can be an effective method for layered magnetic materials discovery. 
    more » « less
  4. Multiferroic materials host both ferroelectricity and magnetism, offering potential for magnetic memory and spin transistor applications. Here, we report a multiferroic chalcogenide semiconductor Cu1−xMn1+ySiTe3(0.04 ≤x≤ 0.26; 0.03 ≤y≤ 0.15), which crystallizes in a polar monoclinic structure (Pmspace group). It exhibits a canted antiferromagnetic state below 35 kelvin, with magnetic hysteresis and remanent magnetization under 15 kelvin. We demonstrate multiferroicity and strong magnetoelectric coupling through magnetodielectric and magnetocurrent measurements. At 10 kelvin, the magnetically induced electric polarization reaches ~0.8 microcoulombs per square centimeter, comparable to the highest value in oxide multiferroics. We also observe possible room-temperature ferroelectricity. Given that multiferroicity is very rare among transition metal chalcogenides, our finding sets up a unique materials platform for designing multiferroic chalcogenides. 
    more » « less
  5. We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature,TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated withTNis detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to theTNplateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+to fully Eu3+at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhancesTN, most likely via enhanced hybridization between the Eu 4fstates and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state. 
    more » « less