skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vasa, a regulator of localized mRNA translation on the spindle
Abstract Localized mRNA translation is a biological process that allows mRNA to be translated on‐site, which is proposed to provide fine control in protein regulation, both spatially and temporally within a cell. We recently reported that Vasa, an RNA‐helicase, is a promising factor that appears to regulate this process on the spindle during the embryonic development of the sea urchin, yet the detailed roles and functional mechanisms of Vasa in this process are still largely unknown. In this review article, to elucidate these remaining questions, we first summarize the prior knowledge and our recent findings in the area of Vasa research and further discuss how Vasa may function in localized mRNA translation, contributing to efficient protein regulation during rapid embryogenesis and cancer cell regulation.  more » « less
Award ID(s):
1940975
PAR ID:
10401977
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
BioEssays
Volume:
45
Issue:
4
ISSN:
0265-9247
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract mRNA translation on the spindle is hypothesized to be an essential strategy for the localized production of cell regulators. This mechanism may be important particularly in early embryonic cells, which have a large diffusion volume and that undergo rapid cell divisions. Evidence to test such a hypothesis has been, however, limited. Here, we use an embryo with both symmetric and asymmetric cell divisions and manipulate Vasa protein, an RNA-helicase, on the spindle in live sea urchin embryos. We learned that the spindle serves as a major site of translation and that protein synthesis within a single spindle can be unequal and help drive asymmetric cell divisions during embryogenesis. Recruiting Vasa to the ectopic sub-cellular region induced a new site of translation, disturbed asymmetric translation on the spindle, and changed the cell fate. Based on these observations, we conclude that Vasa functions in localized translation, which provides a spatiotemporal control in protein synthesis and is essential for rapidly developing embryonic cells. 
    more » « less
  2. How well mRNA transcript levels represent protein abundances has been a controversial issue. Particularly across different environments, correlations between mRNA and protein exhibit remarkable variability from gene to gene. Translational regulation is likely to be one of the key factors contributing to mismatches between mRNA level and protein abundance in bacteria. Here, we quantified genome-wide transcriptome and relative translation efficiency (RTE) under 12 different conditions in Escherichia coli. By quantifying the mRNA-RTE correlation both across genes and across conditions, we uncovered a diversity of gene-specific translational regulations, cooperating with transcriptional regulations, in response to carbon (C), nitrogen (N), and phosphate (P) limitations. Intriguingly, we found that many genes regulating translation are themselves subject to translational regulation, suggesting possible feedbacks. Furthermore, a random forest model suggests that codon usage partially predicts a gene’s cross-condition variability in translation efficiency; such cross-condition variability tends to be an inherent quality of a gene, independent of the specific nutrient limitations. These findings broaden the understanding of translational regulation under different environments and provide novel strategies for the control of translation in synthetic biology. In addition, our data offers a resource for future multi-omics studies. 
    more » « less
  3. Kennedy, S (Ed.)
    Abstract We studied translation factor eukaryotic initiation factor 4E (eIF4E) paralogs that regulate germline mRNAs. Translational control of mRNAs is essential for germ cell differentiation and embryogenesis. Messenger ribonucleoprotein complexes assemble on mRNAs in the nucleus, as they exit via perinuclear germ granules, and in the cytoplasm. Bound messenger ribonucleoproteins including eIF4E exert both positive and negative posttranscriptional regulation. In Caenorhabditiselegans, germ granules are surprisingly dynamic messenger ribonucleoprotein condensates that remodel during development. Two eIF4E paralogs (IFE-1 and IFE-3), their cognate eIF4E–interacting proteins, and polyadenylated mRNAs are present in germ granules. Affinity purification of IFE-1 and IFE-3 messenger ribonucleoproteins allowed mass spectrometry and mRNA-Seq to identify other proteins and the mRNAs that populate stable eukaryotic initiation factor 4E complexes. We find translationally repressed mRNAs (e.g. pos-1, mex-3, spn-4, etc.) enriched with IFE-3, but excluded from IFE-1. Identified mRNAs overlap substantially with mRNAs previously described to be IFE-1 dependent for translation. The findings suggest that oocytes and embryos utilize the 2 eukaryotic initiation factor 4E paralogs for opposite purposes on critically regulated germline mRNAs. Sublocalization within adult perinuclear germ granules suggests an architecture in which Vasa/GLH-1, PGL-1, and the IFEs are stratified, which may facilitate sequential remodeling of messenger ribonucleoproteins leaving the nucleus. Biochemical composition of isolated messenger ribonucleoproteins indicates opposing yet cooperative roles for the 2 eukaryotic initiation factor 4E paralogs. We propose that the IFEs accompany controlled mRNAs in the repressed or activated state during transit to the cytoplasm. Copurification of IFE-1 with IFE-3 suggests they may interact to move repressed mRNAs to ribosomes. 
    more » « less
  4. Summary Among many mRNA modifications, adenine methylation at the N6position (N6‐methyladenosine, m6A) is known to affect mRNA biology extensively. The influence of m6A has yet to be assessed under drought, one of the most impactful abiotic stresses.We show thatArabidopsis thaliana(L.) Heynh. (Arabidopsis) plants lacking mRNA ADENOSINE METHYLASE (MTA) are drought‐sensitive. Subsequently, we comprehensively assess the impacts of MTA‐dependent m6A changes during drought on mRNA abundance, stability, and translation in Arabidopsis.During drought, there is a global trend toward hypermethylation of many protein‐coding transcripts that does not occur inmta. We also observe complex regulation of m6A at a transcript‐specific level, possibly reflecting compensation by other m6A components. Importantly, a subset of transcripts that are hypermethylated in an MTA‐dependent manner exhibited reduced turnover and translation inmta, compared with wild‐type (WT) plants, during drought. Additionally, MTA impacts transcript stability and translation independently of m6A. We also correlate drought‐associated deposition of m6A with increased translation of modulators of drought response, such asRD29A,COR47,COR413,ALDH2B,ERD7, andABF4in WT, which is impaired inmta.m6A is dynamic during drought and, alongside MTA, promotes tolerance by regulating drought‐responsive changes in transcript turnover and translation. 
    more » « less
  5. Abstract Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, tRNAs, and the ribosome machinery, through both cis- and trans-regulation, while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a ‘primer’ that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through three conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs, and translation in organelles and viruses is not covered in this review. 
    more » « less