Abstract Terrestrial planets in the habitable zone (HZ) of Sun-like stars are priority targets for detection and observation by the next generation of space telescopes. Earth's long-term habitability may have been tied to the geological carbon cycle, a process critically facilitated by plate tectonics. In the modern Earth, plate motion corresponds to a mantle convection regime called mobile lid. The alternate, stagnant-lid regime is found on Mars and Venus, which may have lacked strong enough weathering feedback to sustain surface liquid water over geological timescales if initially present. Constraining observational strategies able to infer the most common regime in terrestrial exoplanets requires quantitative predictions of the atmospheric composition of planets in either regime. We use end-member models of volcanic outgassing and crust weathering for the stagnant- and mobile-lid convection regimes, which we couple to models of atmospheric chemistry and climate and ocean chemistry to simulate the atmospheric evolution of these worlds in the HZ. In our simulations under the two alternate regimes, we find that the fraction of planets possessing climates consistent with surface liquid water is virtually the same. Despite this unexpected similarity, we predict that a mission capable of detecting atmospheric CO2abundance above 0.1 bar in 25 terrestrial exoplanets is extremely likely (≥95% of samples) to infer the dominant interior convection regime in that sample with strong evidence (10:1 odds). This offers guidance for the specifications of the Habitable Worlds Observatory NASA concept mission and other future missions capable of probing samples of habitable exoplanets.
more »
« less
Terminator Habitability: The Case for Limited Water Availability on M-dwarf Planets
Abstract Rocky planets orbiting M-dwarf stars are among the most promising and abundant astronomical targets for detecting habitable climates. Planets in the M-dwarf habitable zone are likely synchronously rotating, such that we expect significant day–night temperature differences and potentially limited fractional habitability. Previous studies have focused on scenarios where fractional habitability is confined to the substellar or “eye” region, but in this paper we explore the possibility of planets with terminator habitability, defined by the existence of a habitable band at the transition between a scorching dayside and a glacial nightside. Using a global climate model, we show that for water-limited planets it is possible to have scorching temperatures in the “eye” and freezing temperatures on the nightside, while maintaining a temperate climate in the terminator region, due to reduced atmospheric energy transport. On water-rich planets, however, increasing the stellar flux leads to increased atmospheric energy transport and a reduction in day–night temperature differences, such that the terminator does not remain habitable once the dayside temperatures approach runaway or moist greenhouse limits. We also show that while water-abundant simulations may result in larger fractional habitability, they are vulnerable to water loss through cold trapping on the nightside surface or atmospheric water vapor escape, suggesting that even if planets were formed with abundant water, their climates could become water-limited and subject to terminator habitability.
more »
« less
- Award ID(s):
- 1753373
- PAR ID:
- 10401997
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 945
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 161
- Size(s):
- Article No. 161
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.more » « less
-
Abstract We present the analysis of three more planets from the KMTNet 2021 microlensing season. KMT-2021-BLG-0119Lb is a ∼6MJupplanet orbiting an early M dwarf or a K dwarf, KMT-2021-BLG-0192Lb is a ∼2MNepplanet orbiting an M dwarf, and KMT-2021-BLG-2294Lb is a ∼1.25MNepplanet orbiting a very-low-mass M dwarf or a brown dwarf. These by-eye planet detections provide an important comparison sample to the sample selected with the AnomalyFinder algorithm, and in particular, KMT-2021-BLG-2294 is a case of a planet detected by eye but not by algorithm. KMT-2021-BLG-2294Lb is part of a population of microlensing planets around very-low-mass host stars that spans the full range of planet masses, in contrast to the planet population at ≲0.1 au, which shows a strong preference for small planets.more » « less
-
We provide estimates of atmospheric pressure and surface composition on short-period, rocky exoplanets with dayside magma pools and silicate-vapor atmospheres. Atmospheric pressure tends toward vapor-pressure equilibrium with surface magma, and magma-surface composition is set by the competing effects of fractional vaporization and surface-interior exchange. We use basic models to show how surface-interior exchange is controlled by the planet’s temperature, mass, and initial composition. We assume that mantle rock undergoes bulk melting to form the magma pool, and that winds flow radially away from the substellar point. With these assumptions, we find that: (1) atmosphere-interior exchange is fast when the planet’s bulk-silicate FeO concentration is low, and slow when the planet’s bulk-silicate FeO concentration is high; (2) magma pools are compositionally well mixed for substellar temperatures ≲2400 K, but compositionally variegated and rapidly variable for substellar temperatures ≳2400 K; (3) currents within the magma pool tend to cool the top of the solid mantle (“tectonic refrigeration”) (4) contrary to earlier work, many magma planets have time-variable surface compositions.more » « less
-
Abstract We confirm the planetary nature of two gas giants discovered by TESS to transit M dwarfs with stellar companions at wide separations. TOI-3984 A ( J = 11.93) is an M4 dwarf hosting a short-period (4.353326 ± 0.000005 days) gas giant ( M p = 0.14 ± 0.03 M J and R p = 0.71 ± 0.02 R J ) with a wide-separation white dwarf companion. TOI-5293 A ( J = 12.47) is an M3 dwarf hosting a short-period (2.930289 ± 0.000004 days) gas giant ( M p = 0.54 ± 0.07 M J and R p = 1.06 ± 0.04 R J ) with a wide-separation M dwarf companion. We characterize both systems using a combination of ground- and space-based photometry, speckle imaging, and high-precision radial velocities from the Habitable-zone Planet Finder and NEID spectrographs. TOI-3984 A b ( T eq = 563 ± 15 K and TSM = 138 − 27 + 29 ) and TOI-5293 A b ( T eq = 675 − 30 + 42 K and TSM = 92 ± 14) are two of the coolest gas giants among the population of hot Jupiter–sized gas planets orbiting M dwarfs and are favorable targets for atmospheric characterization of temperate gas giants and 3D obliquity measurements to probe system architecture and migration scenarios.more » « less
An official website of the United States government
