skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Assembly and operation of an imaging system for long-term monitoring of bioluminescent and fluorescent reporters in plants
Abstract Background Non-invasive reporter systems are powerful tools to query physiological and transcriptional responses in organisms. For example, fluorescent and bioluminescent reporters have revolutionized cellular and organismal assays and have been used to study plant responses to abiotic and biotic stressors. Integrated, cooled charge-coupled device (CCD) camera systems have been developed to image bioluminescent and fluorescent signals in a variety of organisms; however, these integrated long-term imaging systems are expensive. Results We have developed self-assembled systems for both growing and monitoring plant fluorescence and bioluminescence for long-term experiments under controlled environmental conditions. This system combines environmental growth chambers with high-sensitivity CCD cameras, multi-wavelength LEDs, open-source software, and several options for coordinating lights with imaging. This easy-to-assemble system can be used for short and long-term imaging of bioluminescent reporters, acute light-response, circadian rhythms, delayed fluorescence, and fluorescent-protein-based assays in vivo. Conclusions We have developed two self-assembled imaging systems that will be useful to researchers interested in continuously monitoring in vivo reporter systems in various plant species.  more » « less
Award ID(s):
2042159 2029549
PAR ID:
10402045
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Plant Methods
Volume:
19
Issue:
1
ISSN:
1746-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Genetically encoded reporters have greatly increased our understanding of biology. While fluorescent reporters have been widely used, photostability and phototoxicity have hindered their use in long‐term experiments. Bioluminescence overcomes some of these challenges but requires the addition of an exogenous luciferin limiting its use. Using a modular approach, Autonomous Molecular BioluminEscent Reporter (AMBER), an indicator of membrane potential is engineered. Unlike other bioluminescent systems, AMBER is a voltage‐gated luciferase coupling the functionalities of the Ciona voltage‐sensing domain (VSD) and bacterial luciferase, luxAB. When co‐expressed with the luciferin‐producing genes, AMBER reversibly switches the bioluminescent intensity as a function of membrane potential. Using biophysical and biochemical methods, it is shown that AMBER switches its enzymatic activity from an OFF to an ON state as a function of the membrane potential. Upon depolarization, AMBER switches from a low to a high enzymatic activity state, showing a several‐fold increase in the bioluminescence output (ΔL/L). AMBER in the pharyngeal muscles and mechanosensory touch neurons ofCaenorhabditis elegansis expressed. Using the compressed sensing approach, the electropharingeogram of theC. eleganspharynx is reconstructed, validating the sensor in vivo. Thus, AMBER represents the first fully genetically encoded bioluminescent reporter without requiring exogenous luciferin addition. 
    more » « less
  2. In vivo fluorescence miniature microscopy has recently proven a major advance, enabling cellular imaging in freely behaving animals. However, fluorescence imaging suffers from autofluorescence, phototoxicity, photobleaching and non- homogeneous illumination artifacts. These factors limit the quality and time course of data collection. Bioluminescence provides an alternative kind of activity-dependent light indicator. Bioluminescent calcium indicators do not require light input, instead generating photons through chemiluminescence. As such, limitations inherent to the requirement for light presentation are eliminated. Further, bioluminescent indicators also do not require excitation light optics: the removal of these components should make a lighter and lower cost microscope with fewer assembly parts. While there has been significant recent progress in making brighter and faster bioluminescence indicators, the advances in imaging hardware have not yet been realized. A hardware challenge is that despite potentially higher signal-to-noise of bioluminescence, the signal strength is lower than that of fluorescence. An open question we address in this report is whether fluorescent miniature microscopes can be rendered sensitive enough to detect bioluminescence. We demonstrate this possibility in vitro and in vivo by implementing optimizations of the UCLA fluorescent miniscope v3.2. These optimizations yielded a miniscope (BLmini) which is 22% lighter in weight, has 45% fewer components, is up to 58% less expensive, offers up to 15 times stronger signal and is sensitive enough to capture spatiotemporal dynamics of bioluminescence in the brain with a signal-to-noise ratio of 34 dB. 
    more » « less
  3. Abstract Phytohormone ethylene regulates numerous aspects of plant physiology, from fruit ripening to pathogen responses. The molecular basis of ethylene biosynthesis and action has been investigated for over 40 years, and a combination of biochemistry, genetics, cell, and molecular biology have proven successful at uncovering the core machinery of the ethylene pathway. A number of molecular tools have been developed over the years that enable visualization of the sites of ethylene production and response in the plant. Genetically encoded biosensors take advantage of reporter proteins, i.e., fluorescent, luminescent, or colorimetric markers, to highlight the tissues that make, perceive, or respond to the hormone. This review describes the different types of biosensors currently available to the ethylene community and discusses potential new strategies for developing the next generation of genetically encoded ethylene reporters. 
    more » « less
  4. A lab-on-a-smartphone (LOS) presents a portable environmental sensing tool that enables the monitoring of water quality by performing various detection techniques such as smartphone-integrated fluorescence microscopy and portable loop-mediated amplification (LAMP) assays. The LOS can conduct multiple laboratory functions and has experimentally demonstrated (1) automated on-chip water sample processing, (2) on-site fluorescent detection of harmful algae cells, and (3) fecal contamination of water through LAMP assays. The LOS can overcome conventional labor-intensive and time-consuming techniques for the monitoring of microbiological contaminants in environment waters. 
    more » « less
  5. The concentration of nitrate (NO3−) in Narragansett Bay has been shown to undergo considerable temporal and spatial variation. However, the dynamics of this flux has never been monitored on a fine-scale (<100 m, < 1 d) or in real-time. Whole-cell bio-reporters are promising candidates for low cost environmental sensing of bioavailable nutrients. Yet difficulties remain in creating sensors for long term deployment in the marine environment. This paper describes the creation and validation of a low-cost sensor using a self-bioluminescent strain of the cyanobacteria Synechococcus elongatus pcc 7942 for the direct measurement of bioavailable nitrate. Nitrate bioavailability was measured by monitoring light emission from a luxAB based promotor fusion to glnA using a light to frequency sensor and single board microcontroller. Sensor designs are presented in this manuscript with specific focus on storage, cell viability, and compatibility with the marine environment. Sensors were able to consistently assess nitrate standards as low as 1 ppm (16.3 μM). Using a wavelet denoising approach to reduce white noise and hardware noise, nitrate detection of standards as low as 0.037 ppm (0.65 μM) was achieved. Good sensitivity and low cost make these sensors ideal candidates for continuous monitoring of biological nitrates in estuarine systems. 
    more » « less