skip to main content


Title: Model selection, hummingbird natural history, and biological hypotheses: a response to Sazatornil et al.
Abstract

We have previously suggested that a shift from bee to hummingbird pollination, in concert with floral architecture modifications, occurred at the crown of Salvia subgenus Calosphace in North America ca. 20 mya (Kriebel et al. 2020 and references therein). Sazatornil et al. (2022), using a hidden states model, challenged these assertions, arguing that bees were the ancestral pollinator of subg. Calosphace and claiming that hummingbirds could not have been the ancestral pollinator of subg. Calosphace because hummingbirds were not contemporaneous with crown subg. Calosphace in North America. Here, using a variety of models, we demonstrate that most analyses support hummingbirds as ancestral pollinators of subg. Calosphace and show that Sazatornil et al. (2022) erroneously concluded that hummingbirds were absent from North America ca. 20 mya. We contend that “biological realism” – based on timing and placement of hummingbirds in Mexico ca. 20 mya and the correlative evolution of hummingbird associated floral traits – must be considered when comparing models based on fit and complexity, including hidden states models.

 
more » « less
NSF-PAR ID:
10402120
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution
Volume:
77
Issue:
2
ISSN:
0014-3820
Format(s):
Medium: X Size: p. 646-653
Size(s):
["p. 646-653"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Premise

    A switch in pollinator can occur when a plant lineage enters a new habitat where the ancestral pollinator is less common, and a novel pollinator is more common. Because pollinator communities vary according to environmental tolerances and availability of resources, there may be consistent associations between pollination mode and specific regions and habitats. Such associations can be studied in lineages that have experienced multiple pollinator transitions, representing evolutionary replicates.

    Methods

    Our study focused on a large clade ofPenstemonwildflower species in western North America, which has repeatedly evolved hummingbird‐adapted flowers from ancestral bee‐adapted flowers. For each species, we estimated geographic ranges from occurrence data and inferred environmental niches from climate, topographical, and soil data. Using a phylogenetic comparative approach, we investigated whether hummingbird‐adapted species occupy distinct geographic regions or habitats relative to bee‐adapted species.

    Results

    Hummingbird‐adapted species occur at lower latitudes and lower elevations than bee‐adapted species, resulting in a difference in their environmental niche. Bee‐adapted species sister to hummingbird‐adapted species are also found in relatively low elevations and latitudes, similar to their hummingbird‐adapted sister species, suggesting ecogeographic shifts precede pollinator divergence. Sister species pairs—regardless of whether they differ in pollinator—show relatively little geographic range overlap.

    Conclusions

    Adaptation to a novel pollinator may often occur in geographic and ecological isolation from ancestral populations. The ability of a given lineage to adapt to novel pollinators may critically depend on its ability to colonize regions and habitats associated with novel pollinator communities.

     
    more » « less
  2. Abstract

    Mutualistic relationships, such as those between plants and pollinators, may be vulnerable to the local extinctions predicted under global environmental change. However, network theory predicts that plant–pollinator networks can withstand species loss if pollinators switch to alternative floral resources (rewiring). Whether rewiring occurs following species loss in natural communities is poorly known because replicated species exclusions are difficult to implement at appropriate spatial scales.

    We experimentally removed a hummingbird‐pollinated plant,Heliconia tortuosa, from within tropical forest fragments to investigate how hummingbirds respond to temporary loss of an abundant resource. Under therewiring hypothesis, we expected that behavioural flexibility would allow hummingbirds to use alternative resources, leading to decreased ecological specialization and reorganization of the network structure (i.e. pairwise interactions). Alternatively, morphological or behavioural constraints—such as trait‐matching or interspecific competition—might limit the extent to which hummingbirds alter their foraging behaviour.

    We employed a replicated Before‐After‐Control‐Impact experimental design and quantified plant–hummingbird interactions using two parallel sampling methods: pollen collected from individual hummingbirds (‘pollen networks’, created from >300 pollen samples) and observations of hummingbirds visiting focal plants (‘camera networks’, created from >19,000 observation hours). To assess the extent of rewiring, we quantified ecological specialization at the individual, species and network levels and examined interaction turnover (i.e. gain/loss of pairwise interactions).

    H. tortuosaremoval caused some reorganization of pairwise interactions but did not prompt large changes in specialization, despite the large magnitude of our manipulation (on average, >100 inflorescences removed in exclusion areas of >1 ha). Although some individual hummingbirds sampled through time showed modest increases in niche breadth followingHeliconiaremoval (relative to birds that did not experience resource loss), these changes were not reflected in species‐ and network‐level specialization metrics.

    Our results suggest that, at least over short time‐scales, animals may not necessarily shift to alternative resources after losing an abundant food resource—even in species thought to be highly opportunistic foragers, such as hummingbirds. Given that rewiring contributes to theoretical predictions of network stability, future studies should investigate why pollinators might not expand their diets after a local resource extinction.

     
    more » « less
  3. ABSTRACT

    Hummingbirds, a highly diverse avian family, are specialized vertebrate pollinators that feed upon carbohydrate-rich nectar to fuel their fast metabolism while consuming invertebrates to obtain protein. Previous work has found that morphologically diverse hummingbird communities exhibit higher diet specialization on floral resources than morphologically similar hummingbird communities. Due to the difficulties of studying avian diets, we have little understanding whether hummingbirds show similar patterns with their invertebrate prey. Here, we use DNA metabarcoding to analyze floral and invertebrate diets of 3 species of sympatric North American hummingbirds. We collected fecal samples from 89 Anna’s (Calypte anna), 39 Black-chinned (Archilochus alexandri), and 29 Calliope (Selasphorus calliope) hummingbirds in urban and rural localities as well as across an elevational gradient from sea level to 2,500 meters above sea level in California, USA. We found hummingbirds showed high dietary overlap in both invertebrate and plant resources, with few invertebrate and plant families common to most individuals and many families found in only a few individuals. Chironomidae was the most common invertebrate family across all species, and Rosaceae and Orobanchaceae were the most common plant families. Anna’s Hummingbirds had significantly higher invertebrate diet diversity than Black-chinned Hummingbirds when found at the same sites, but we found no difference in plant diet diversity among any of the 3 species. Hummingbirds in urban sites had higher plant diet diversity than in rural sites, but we found no effect of elevation on dietary richness. Our study shows how DNA metabarcoding can be used to non-invasively investigate previously unknown life-histories of well-studied birds, lending insight to community structure, function, and evolution.

     
    more » « less
  4. Premise: A switch in pollinator can occur when a plant lineage enters a new habitat where the ancestral pollinator is less common and a novel pollinator is more common. Since pollinator communities vary according to environmental tolerances and availability of resources, there may be consistent associations between pollination mode and specific regions and habitats. Such associations can be studied in lineages that have experienced multiple pollinator transitions, representing evolutionary replicates. Methods: Our study focused on a large clade of Penstemon wildflower species in western North America that has repeatedly evolved hummingbird-adapted flowers from ancestral bee-adapted flowers. For each species, we estimated geographic ranges from occurrence data and inferred environmental niches from climate, topographical, and soil data. Using a phylogenetic comparative approach, we investigated whether hummingbird-adapted species occupy distinct geographic regions or habitats relative to beeadapted species. Results: Hummingbird-adapted species occur at lower latitudes and lower elevations than bee-adapted species, resulting in a difference in their environmental niche. Hummingbird-adapted species seem to evolve in lineages that previously adapted to lower latitudes and elevations, since bee-adapted species sister to hummingbird-adapted species also occur in these regions and habitats. Sister species pairs – regardless of whether they differ in pollinator – show relatively little geographic range overlap. Conclusions: Adaptation to a novel pollinator may often occur in geographic and ecological isolation from ancestral populations. The ability of a given lineage to adapt to novel pollinators may critically depend on its ability to colonize regions and habitats associated with novel pollinator communities. 
    more » « less
  5. Abstract

    Different populations of plant species can adapt to their local pollinators and diverge in floral traits accordingly. Floral traits are subject to pollinator‐driven natural selection to enhance plant reproductive success. Studies on temperate plant systems have shown pollinator‐driven selection results in floral trait variation along elevational gradients, but studies in tropical systems are lacking. We analyzed floral traits and pollinator assemblages in the Neotropical bee‐pollinated taxonCostus guanaiensisvar.tarmicusacross four sites along a steep elevational gradient in Peru. We found variations in floral traits of size, color, and reward, and in the pollinator assemblage along the elevational gradient. We examined our results considering two hypotheses, (1) local adaptation to different bee assemblages, and (2) the early stages of an evolutionary shift to a new pollinator functional group (hummingbirds). We found some evidence consistent with the adaptation ofC. guanaiensisvar.tarmicusto the local bee fauna along the studied elevational gradient. Corolla width across sites was associated with bee thorax width of the local most frequent pollinator. However, we could not rule out the possibility of the beginning of a bee‐to‐hummingbird pollination shift in the highest‐studied site. Our study is one of the few geographic‐scale analyses of floral trait and pollinator assemblage variation in tropical plant species. Our results broaden our understanding of plant‐pollinator interactions beyond temperate systems by showing substantial intraspecific divergence in both floral traits and pollinator assemblages across geographic space in a tropical plant species.

     
    more » « less