skip to main content

Title: An observationally derived kick distribution for neutron stars in binary systems

Understanding the natal kicks received by neutron stars (NSs) during formation is a critical component of modelling the evolution of massive binaries. Natal kicks are an integral input parameter for population synthesis codes, and have implications for the formation of double NS systems and their subsequent merger rates. However, many of the standard observational kick distributions that are used are obtained from samples created only from isolated NSs. Kick distributions derived in this way overestimate the intrinsic NS kick distribution. For NSs in binaries, we can only directly estimate the effect of the natal kick on the binary system, instead of the natal kick received by the NS itself. Here, for the first time, we present a binary kick distribution for NSs with low-mass companions. We compile a catalogue of 145 NSs in low-mass binaries with the best available constraints on proper motion, distance, and systemic radial velocity. For each binary, we use a three-dimensional approach to estimate its binary kick. We discuss the implications of these kicks on system formation, and provide a parametric model for the overall binary kick distribution, for use in future theoretical modelling work. We compare our results with other work on isolated NSs and NSs in binaries, finding that the NS kick distributions fit using only isolated pulsars underestimate the fraction of NSs that receive low kicks. We discuss the implications of our results on modelling double NS systems, and provide suggestions on how to use our results in future theoretical works.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 2504-2524
["p. 2504-2524"]
Sponsoring Org:
National Science Foundation
More Like this

    The identification of the first confirmed neutron star–black hole (NS-BH) binary mergers by the LIGO, Virgo, and KAGRA collaboration provides the opportunity to investigate the properties of the early sample of confirmed and candidate events. Here, we focus primarily on the tilt angle of the BH’s spin relative to the orbital angular momentum vector of the binary, and the implications for the physical processes that determine this tilt. The posterior tilt distributions of GW200115 and the candidate events GW190426_152155 and GW190917_114630 peak at significantly anti-aligned orientations (though display wide distributions). Producing these tilts through isolated binary evolution would require stronger natal kicks than are typically considered (and preferentially polar kicks would be ruled out), and/or an additional source of tilt such as stable mass transfer. The early sample of NS-BH events are less massive than expected for classical formation channels, and may provide evidence for efficient mass transfer that results in the merger of more massive NS-BH binaries before their evolution to the compact phase is complete. We predict that future gravitational-wave detections of NS-BH events will continue to display total binary masses of ≈7 M⊙ and mass ratios of q ∼ 3 if this interpretation is correct. Conversely, the high mass of the candidate GW191219_163120 suggests a dynamical capture origin. Large tilts in a significant fraction of merging NS-BH systems would weaken the prospects for electromagnetic detection. However, EM observations, including non-detections, can significantly tighten the constraints on spin and mass ratio.

    more » « less
  2. Observations of X-ray binaries indicate a dearth of compact objects in the mass range from ∼2 − 5  M ⊙ . The existence of this (first mass) gap has been used to discriminate between proposed engines behind core-collapse supernovae. From LIGO/Virgo observations of binary compact remnant masses, several candidate first mass gap objects, either neutron stars (NSs) or black holes (BHs), were identified during the O3 science run. Motivated by these new observations, we study the formation of BH-NS mergers in the framework of isolated classical binary evolution, using population synthesis methods to evolve large populations of binary stars (Population I and II) across cosmic time. We present results on the NS to BH mass ratios ( q  =  M NS / M BH ) in merging systems, showing that although systems with a mass ratio as low as q  = 0.02 can exist, typically BH-NS systems form with moderate mass ratios q  = 0.1 − 0.2. If we adopt a delayed supernova engine, we conclude that ∼30% of BH-NS mergers may host at least one compact object in the first mass gap (FMG). Even allowing for uncertainties in the processes behind compact object formation, we expect the fraction of BH-NS systems ejecting mass during the merger to be small (from ∼0.6 − 9%). In our reference model, we assume: (i) the formation of compact objects within the FMG, (ii) natal NS/BH kicks decreased by fallback, (iii) low BH spins due to Tayler-Spruit angular momentum transport in massive stars. We find that ≲1% of BH-NS mergers will have any mass ejection and about the same percentage will produce kilonova bright enough to have a chance of being detected with a large (Subaru-class) 8 m telescope. Interestingly, all these mergers will have both a BH and an NS in the FMG. 
    more » « less
  3. Abstract

    In their most recent observing run, the LIGO-Virgo-KAGRA Collaboration observed gravitational waves from compact binary mergers with highly asymmetric mass ratios, including both binary black holes (BBHs) and neutron star-black holes (NSBHs). It appears that NSBHs with mass ratiosq≃ 0.2 are more common than equally asymmetric BBHs, but the reason for this remains unclear. We use the binary population synthesis codecosmicto investigate the evolutionary pathways leading to the formation and merger of asymmetric compact binaries. We find that within the context of isolated binary stellar evolution, most asymmetric mergers start off as asymmetric stellar binaries. Because of the initial asymmetry, these systems tend to first undergo a dynamically unstable mass transfer phase. However, after the first star collapses into a compact object, the mass ratio is close to unity and the second phase of mass transfer is usually stable. According to our simulations, this stable mass transfer fails to shrink the orbit enough on its own for the system to merge. Instead, the natal kick received by the second-born compact object during its collapse is key in determining how many of these systems can merge. For the most asymmetric systems with mass ratios ofq≤ 0.1, the merging systems in our models receive an average kick magnitude of 255 km s−1during the second collapse, while the average kick for non-merging systems is 59 km s−1. Because lower mass compact objects, like neutron stars, are expected to receive larger natal kicks than higher mass BHs, this may explain why asymmetric NSBH systems merge more frequently than asymmetric BBH systems.

    more » « less
  4. We report discovery and characterization of a main-sequence G star orbiting a dark object with mass1.90±0.04M. The system was discovered via Gaia astrometry and has an orbital period of 731 days. We obtained multi-epoch RV follow-up over a period of 639 days, allowing us to refine the Gaia orbital solution and precisely constrain the masses of both components. The luminous star is a12,Gyr-old, low-metallicity halo star near the main-sequence turnoff (,K; ; ;M0.79M) with a highly enhanced lithium abundance. The RV mass function sets a minimum companion mass for an edge-on orbit ofM2>1.67M, well above the Chandrasekhar limit. The Gaia inclination constraint,i=68.7±1.4,deg, then implies a companion mass ofM2=1.90±0.04M. The companion is most likely a massive neutron star: the only viable alternative is two massive white dwarfs in a close binary, but this scenario is disfavored on evolutionary grounds. The system’s low eccentricity (e=0.122±0.002) disfavors dynamical formation channels and implies that the neutron star likely formed with little mass loss (1M) and with a weak natal kick (). Stronger kicks with more mass loss are not fully ruled out but would imply that a larger population of similar systems with higher eccentricities should exist. The current orbit is too small to have accommodated the neutron star progenitor as a red supergiant or super-AGB star. The simplest formation scenario – isolated binary evolution – requires the system to have survived unstable mass transfer and common envelope evolution with a donor-to-accretor mass ratio>10. The system, which we call Gaia NS1, is likely a progenitor of symbiotic X-ray binaries and long-period millisecond pulsars. Its discovery challenges binary evolution models and bodes well for Gaia’s census of compact objects in wide binaries.

    more » « less

    Current prescriptions for supernova natal kicks in rapid binary population synthesis simulations are based on fits of simple functions to single pulsar velocity data. We explore a new parametrization of natal kicks received by neutron stars in isolated and binary systems developed by Mandel & Müller, which is based on 1D models and 3D supernova simulations, and accounts for the physical correlations between progenitor properties, remnant mass, and the kick velocity. We constrain two free parameters in this model using very long baseline interferometry velocity measurements of Galactic single pulsars. We find that the inferred values of natal kick parameters do not differ significantly between single and binary evolution scenarios. The best-fitting values of these parameters are $v$ns = 520 km s−1 for the scaling prefactor for neutron star kicks, and σns = 0.3 for the fractional stochastic scatter in the kick velocities.

    more » « less