skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heterosynaptic plasticity in biomembrane memristors controlled by pH
Abstract In biology, heterosynaptic plasticity maintains homeostasis in synaptic inputs during associative learning and memory, and initiates long-term changes in synaptic strengths that nonspecifically modulate different synapse types. In bioinspired neuromorphic circuits, heterosynaptic plasticity may be used to extend the functionality of two-terminal, biomimetic memristors. In this article, we explore how changes in the pH of droplet interface bilayer aqueous solutions modulate the memristive responses of a lipid bilayer membrane in the pH range 4.97–7.40. Surprisingly, we did not find conclusive evidence for pH-dependent shifts in the voltage thresholds ( V* ) needed for alamethicin ion channel formation in the membrane. However, we did observe a clear modulation in the dynamics of pore formation with pH in time-dependent, pulsed voltage experiments. Moreover, at the same voltage, lowering the pH resulted in higher steady-state currents because of increased numbers of conductive peptide ion channels in the membrane. This was due to increased partitioning of alamethicin monomers into the membrane at pH 4.97, which is below the pKa (~5.3–5.7) of carboxylate groups on the glutamate residues of the peptide, making the monomers more hydrophobic. Neutralization of the negative charges on these residues, under acidic conditions, increased the concentration of peptide monomers in the membrane, shifting the equilibrium concentrations of peptide aggregate assemblies in the membrane to favor greater numbers of larger, increasingly more conductive pores. It also increased the relaxation time constants for pore formation and decay, and enhanced short-term facilitation and depression of the switching characteristics of the device. Modulating these thresholds globally and independently of alamethicin concentration and applied voltage will enable the assembly of neuromorphic computational circuitry with enhanced functionality. Impact statement We describe how to use pH as a modulatory “interneuron” that changes the voltage-dependent memristance of alamethicin ion channels in lipid bilayers by changing the structure and dynamical properties of the bilayer. Having the ability to independently control the threshold levels for pore conduction from voltage or ion channel concentration enables additional levels of programmability in a neuromorphic system. In this article, we note that barriers to conduction from membrane-bound ion channels can be lowered by reducing solution pH, resulting in higher currents, and enhanced short-term learning behavior in the form of paired-pulse facilitation. Tuning threshold values with environmental variables, such as pH, provide additional training and learning algorithms that can be used to elicit complex functionality within spiking neural networks. Graphical abstract  more » « less
Award ID(s):
2219289
PAR ID:
10402226
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
MRS Bulletin
Volume:
48
Issue:
1
ISSN:
0883-7694
Page Range / eLocation ID:
13 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Brain‐inspired (or neuromorphic) computing circumvents costly bottlenecks in conventional Von Neumann architectures by collocating memory and processing. This is accomplished through dynamic material architectures, strengthening or weakening internal conduction pathways similar to synaptic connections within the brain. A new class of neuromorphic materials approximates synaptic interfaces using lipid membranes assembled via the droplet interface bilayer (DIB) technique. These DIB membranes have been studied as novel memristors or memcapacitors owing to the soft, reconfigurable nature of both the lipid membrane geometry and the embedded ion‐conducting channels. In this work, a biomolecular approach to neuromorphic materials is expanded frommodel synapsesto acharge‐integrating model neuron. In these serial membrane networks, it is possible to create distributions of voltage‐sensitive gates capable of trapping ionic charge. This trapped charge creates transmembrane potential differences that drive changes in the system's net capacitance through electrowetting, providing a synaptic weight that changes in response to the history and timing of input signals. This fundamental change from interfacial memory (dimensions of the membrane) to internal memory (charge trapped within the droplets) provides a functional plasticity capable of multiple weights, longer‐term retention roughly an order of magnitude greater than memory stored in the membranes alone, and programming‐erasure. 
    more » « less
  2. Synaptic plasticity refers to activity-dependent synaptic strengthening or weakening between neurons. It is usually associated with homosynaptic plasticity, which refers to a synaptic junction controlled by interactions between specific neurons. Heterosynaptic plasticity, on the other hand, lacks this specificity. It involves much larger populations of synapses and neurons and can be associated with changes in synaptic strength due to nonlocal alterations in the ambient electrochemical environment. This paper presents specific examples demonstrating how variations in the ambient electrochemical environment of lipid membranes can impact the nonlinear dynamical behaviors of memristive and memcapacitive systems in droplet interface bilayers (DIBs). Examples include the use of pH as a modulatory factor that alters the voltage-dependent memristive behavior of alamethicin ion channels in DIB lipid bilayers, and the discovery of long-term potentiation (LTP) in a lipid bilayer-only system after application of electrical stimulation protocols. 
    more » « less
  3. We present Jammed Interconnected Bilayer Emulsions (JIBEs) as a class of tissue-like materials with macroscopic scalability and rapid fabrication, comprising millions to billions of bilayer-separated aqueous compartments. These materials closely mimic the organizational structure and properties of biological tissues. Our rapid self-assembly method for producing JIBEs generates milliliter- to deciliter-scale volumes within minutes representing over 10,000-fold improvement in the fabrication speed of droplet-based artificial tissues compared to existing droplet-based methods, enabling the creation of a truly macroscopic material. The method is highly adaptable to a wide range of amphiphiles, including lipids and block-copolymers, providing flexibility in tailoring JIBEs for diverse applications. The jammed architecture of JIBEs imparts unique properties, such as direct 3D-printabilty into aqueous solutions or onto air-exposed surfaces. Their membrane-bound structure also allows functionalization with biological and artificial nanochannels, enabling the material to exhibit the specific properties of the incorporated channels. In this work, we demonstrate three key features of JIBEs using distinct ion channels: tunable conductance, selective transport, and memristance. Incorporating an E. coli outer membrane protein increased ionic conductance by approximately 4,400-fold compared to non-functionalized tissues. Introducing a peptide-based transporter produced ion-selective membranes capable of discriminating ammonium over sodium at a ratio greater than 15:1. Finally, incorporating a model voltage-gated pore enabled the construction of a massively networked memristive device. We propose that functionalizing JIBEs with additional membrane proteins or synthetic ion channels could unlock a broad range of applications, including separations, energy generation and storage, neuromorphic computing, tissue engineering, drug delivery, and soft robotics. 
    more » « less
  4. Many voltage-gated potassium (Kv) channels display a time-dependent phenomenon called C-type inactivation, whereby prolonged activation by voltage leads to the inhibition of ionic conduction, a process that involves a conformational change at the selectivity filter toward a non-conductive state. Recently, a high-resolution structure of a strongly inactivated triple-mutant channel kv1.2-kv2.1-3m revealed a novel conformation of the selectivity filter that is dilated at its outer end, distinct from the well-characterized conductive state. While the experimental structure was interpreted as the elusive non-conductive state, our molecular dynamics simulations and electrophysiological measurements show that the dilated filter of kv1.2-kv2.1-3m is conductive and, as such, cannot completely account for the inactivation of the channel observed in the structural experiments. The simulation shows that an additional conformational change, implicating isoleucine residues at position 398 along the pore lining segment S6, is required to effectively block ion conduction. The I398 residues from the four subunits act as a state-dependent hydrophobic gate located immediately beneath the selectivity filter. These observations are corroborated by electrophysiological experiments showing that ion permeation can be resumed in the kv1.2-kv2.1-3m channel when I398 is mutated to an asparagine—a mutation that does not abolish C-type inactivation since digitoxin (AgTxII) fails to block the ionic permeation of kv1.2-kv2.1-3m_I398N. As a critical piece of the C-type inactivation machinery, this structural feature is the potential target of a broad class of quaternary ammonium (QA) blockers and negatively charged activators thus opening new research directions toward the development of drugs that specifically modulate gating states of Kv channels. 
    more » « less
  5. The electrochemical gradients established across cell membranes are paramount for the execution of biological functions. Besides ion channels, other transporters, such as exogenous pore-forming toxins, may present ionic selectivity upon reconstitution in natural and artificial lipid membranes and contribute to the electrochemical gradients. In this context, we utilized electrophysiology approaches to assess the ionic selectivity of the pore-forming toxin lysenin reconstituted in planar bilayer lipid membranes. The membrane voltages were determined from the reversal potentials recorded upon channel exposure to asymmetrical ionic conditions, and the permeability ratios were calculated from the fit with the Goldman–Hodgkin–Katz equation. Our work shows that lysenin channels are ion-selective and the determined permeability coefficients are cation and anion-species dependent. We also exploited the unique property of lysenin channels to transition to a stable sub-conducting state upon exposure to calcium ions and assessed their subsequent change in ionic selectivity. The observed loss of selectivity was implemented in an electrical model describing the dependency of reversal potentials on calcium concentration. In conclusion, our work demonstrates that this pore-forming toxin presents ionic selectivity but this is adjusted by the particular conduction state of the channels. 
    more » « less