skip to main content

This content will become publicly available on February 1, 2024

Title: Wetland Removal Mechanisms for Emerging Contaminants
In recent decades, previously unobserved trace compounds have become more widely detected in wastewater treatment effluents and freshwater ecosystems. Emanating from various sources and presenting potential human health and ecological risks at much lesser concentrations than traditional contaminants, detection of “emerging contaminants” has increased with improvements in analytical techniques. The behavior of emerging contaminants in wetlands is a topic of increasing interest, as natural wetlands are known to transform and sequester pollutants and constructed or treatment wetlands are widely utilized to address elevated concentrations of constituents of concern. Both natural and constructed wetlands are complex biogeochemical systems with interrelated abiotic and biotic mechanisms leading to the removal of emerging contaminants. A literature review was performed to assess the current state of knowledge of various wetland mechanisms involved in removing these contaminants from surface waters and effluents. The primary mechanisms discussed in the literature are sorption, photodegradation, microbial biodegradation and phytoremediation. The most influential mechanisms are dependent on the properties of the contaminants and wetland systems studied. Common trends exist for different constructed wetland designs to leverage various mechanisms based on hydrology, substrate and vegetation plantings. Much remains to be understood about the various processes occurring in wetlands as they relate more » to emerging contaminant removal. Improving the understanding of the potential role of wetland mechanisms can help manage this environmental challenge more effectively. « less
Authors:
; ; ; ; ;
Award ID(s):
1946093
Publication Date:
NSF-PAR ID:
10402297
Journal Name:
Land
Volume:
12
Issue:
2
Page Range or eLocation-ID:
472
ISSN:
2073-445X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wetland treatment systems are used extensively across the world to mitigate surface runoff. While wetland treatment for nitrogen mitigation has been comprehensively reviewed, the implications of common-use pesticides and antibiotics on nitrogen reduction remain relatively unreviewed. Therefore, this review seeks to comprehensively assess the removal of commonly used pesticides and antibiotics and their implications for nitrogen removal in wetland treatment systems receiving non-point source runoff from urban and agricultural landscapes. A total of 181 primary studies were identified spanning 37 countries. Most of the reviewed publications studied pesticides (n = 153) entering wetlands systems, while antibiotics (n = 29) had fewer publications. Even fewer publications reviewed the impact of influent mixtures on nitrogen removal processes in wetlands (n = 16). Removal efficiencies for antibiotics (35–100%), pesticides (−619–100%), and nitrate-nitrogen (−113–100%) varied widely across the studies, with pesticides and antibiotics impacting microbial communities, the presence and type of vegetation, timing, and hydrology in wetland ecosystems. However, implications for the nitrogen cycle were dependent on the specific emerging contaminant present. A significant knowledge gap remains in how wetland treatment systems are used to treat non-point source mixtures that contain nutrients, pesticides, and antibiotics, resulting in an unknown regarding nitrogen removal efficiency asmore »runoff contaminant mixtures evolve.« less
  2. Abstract BACKGROUND

    Azoles are an important class of compounds that are widely used as corrosion inhibitors in aircraft de‐icing agents, cooling towers, semiconductor manufacturing and household dishwashing detergents. They also are important moieties in pharmaceutical drugs and fungicides. Azoles are widespread emerging contaminants occurring frequently in water bodies. Azole compounds can potentially cause inhibition towards key biological processes in natural ecosystems and wastewater treatment processes. Of particular concern is the inhibition of azoles to the nitrification process (aerobic oxidation of ammonium). This study investigated the acute toxicity of azole compounds towards the anaerobic ammonia oxidation (anammox) process, which is an important environmental biotechnology gaining traction for nutrient‐nitrogen removal during wastewater treatment. In this study, using batch bioassay techniques, the anammox toxicity of eight commonly occurring azole compounds was evaluated.

    RESULTS

    The results show that 1H‐benzotriazole and 5‐methyl‐1H‐benzotriazole had the highest inhibitory effect on the anammox process, causing 50% decrease in anammox activity (IC50) at concentrations of 19.6 and 17.8 mg L−1, respectively. 1H‐imidazole caused less severe toxicity with an IC50of 79.4 mg L−1. The other azole compounds were either nontoxic (1H‐pyrazole, 1H‐1,2,4‐triazole and 1‐methyl‐pyrazole) or at best mildly toxic (1H‐benzotriazole‐5‐carboxylic acid and 3,5‐dimethyl‐1H‐pyrazole) towards the anammox bacteria at the concentrations tested.

    CONCLUSIONS

    This study showed that mostmore »azole compounds tested displayed mild to low or no toxicity towards the anammox bacteria. The anammox bacteria were found to be far less sensitive to azoles compared to nitrifying bacteria. © 2019 Society of Chemical Industry

    « less
  3. We investigated the occurrence and attenuation of several human enteric viruses (i.e., norovirus, adenovirus,Aichi virus 1, polyomaviruses, and enterovirus) as well as a plant virus, pepper mild mottle virus (PMMoV), at two surface flow wetlands in Arizona. The retention time in one of the wetlands was seven days, whereas in the otherwetland it could not be defined.Water sampleswere collected at the inlet and outlet fromthewetlands over nine months, and concentration of viral genomes was determined by quantitative polymerase chain reaction (qPCR). Of the human enteric viruses tested, adenovirus and Aichi virus 1 were found in the greatest prevalence in treated wastewater (i.e., inlet of thewetlands). Reduction efficiencies of enteric viruses by thewetlands ranged from1 to 3 log10. Polyomaviruseswere generally removed to belowdetection limit, indicating at least 2 to 4 log10 removal. PMMoV was detected in a greater concentration in the inlet of both wetlands for all the viruses tested (104 to 107 genome copies/L), but exhibited little or no removal (1 log10 or less). To determine the factors associated with virus genome attenuation (as determined by qPCR), the persistence of PMMoV and poliovirus type 1 (an enterovirus) was studied in autoclaved and natural wetland water, and deionized water incubated undermore »three different temperatures for 21 days. A combination of elevated water temperature and biological activities reduced poliovirus by 1 to 4 log10, while PMMoV was not significantly reduced during this time period.Overall, PMMoV showed much greater persistence than human viruses in the wetland treatment.« less
  4. Abstract Practitioner Points

    more »list-type='bullet'>

    PPCP removal positively correlated with solids retention time and varied by treatment facility and compound.

    Upgrade of WWTFs for biological nitrogen removal may also increase PPCP removal.

    Surface water fluoxetine concentrations may present an ecological risk to the Great Bay Estuary.

    « less
  5. Per- and polyfluoroalkyl substances (PFAS) are pollutants that have demonstrated a high level of environmental persistence and are very difficult to remediate. As the body of literature on their environmental effects has increased, so has regulatory and research scrutiny. The widespread usage of PFAS in industrial applications and consumer products, complicated by their environmental release, mobility, fate, and transport, have resulted in multiple exposure routes for humans. Furthermore, low screening levels and stringent regulatory standards that vary by state introduce considerable uncertainty and potential costs in the environmental management of PFAS. The recalcitrant nature of PFAS render their removal difficult, but existing and emerging technologies can be leveraged to destroy or sequester PFAS in a variety of environmental matrices. Additionally, new research on PFAS remediation technologies has emerged to address the efficiency, costs, and other shortcomings of existing remediation methods. Further research on the impact of field parameters such as secondary water quality effects, the presence of co-contaminants and emerging PFAS, reaction mechanisms, defluorination yields, and the decomposition products of treatment technologies is needed to fully evaluate these emerging technologies, and industry attention should focus on treatment train approaches to improve efficiency and reduce the cost of treatment.