skip to main content


Title: Widespread Gene Expression Divergence in Butterfly Sensory Tissues Plays a Fundamental Role During Reproductive Isolation and Speciation
Abstract Neotropical Heliconius butterflies are well known for their intricate behaviors and multiple instances of incipient speciation. Chemosensing plays a fundamental role in the life history of these groups of butterflies and in the establishment of reproductive isolation. However, chemical communication involves synergistic sensory and accessory functions, and it remains challenging to investigate the molecular mechanisms underlying behavioral differences. Here, we examine the gene expression profiles and genomic divergence of three sensory tissues (antennae, legs, and mouthparts) between sexes (females and males) and life stages (different adult stages) in two hybridizing butterflies, Heliconius melpomene and Heliconius cydno. By integrating comparative transcriptomic and population genomic approaches, we found evidence of widespread gene expression divergence, supporting a crucial role of sensory tissues in the establishment of species barriers. We also show that sensory diversification increases in a manner consistent with evolutionary divergence based on comparison with the more distantly related species Heliconius charithonia. The findings of our study strongly support the unique chemosensory function of antennae in all three species, the importance of the Z chromosome in interspecific divergence, and the nonnegligible role of nonchemosensory genes in the divergence of chemosensory tissues. Collectively, our results provide a genome-wide illustration of diversification in the chemosensory system under incomplete reproductive isolation, revealing strong molecular separation in the early stage of speciation. Here, we provide a unique perspective and relevant view of the genetic architecture (sensory and accessory functions) of chemosensing beyond the classic chemosensory gene families, leading to a better understanding of the magnitude and complexity of molecular changes in sensory tissues that contribute to the establishment of reproductive isolation and speciation.  more » « less
Award ID(s):
2108227 1736026 1656389
NSF-PAR ID:
10402303
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Wei, Fuwen
Date Published:
Journal Name:
Molecular Biology and Evolution
Volume:
39
Issue:
11
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chemosensory communication is essential to insect biology, playing indispensable roles during mate-finding, foraging, and oviposition behaviors. These traits are particularly important during speciation, where chemical perception may serve to establish species barriers. However, identifying genes associated with such complex behavioral traits remains a significant challenge. Through a combination of transcriptomic and genomic approaches, we characterize the genetic architecture of chemoperception and the role of chemosensing during speciation for a young species pair of Heliconius butterflies, Heliconius melpomene and Heliconius cydno . We provide a detailed description of chemosensory gene-expression profiles as they relate to sensory tissue (antennae, legs, and mouthparts), sex (male and female), and life stage (unmated and mated female butterflies). Our results untangle the potential role of chemical communication in establishing barriers during speciation and identify strong candidate genes for mate and host plant choice behaviors. Of the 252 chemosensory genes, HmOBP20 (involved in volatile detection) and HmGr56 (a putative synephrine-related receptor) emerge as strong candidates for divergence in pheromone detection and host plant discrimination, respectively. These two genes are not physically linked to wing-color pattern loci or other genomic regions associated with visual mate preference. Altogether, our results provide evidence for chemosensory divergence between H. melpomene and H. cydno , two rarely hybridizing butterflies with distinct mate and host plant preferences, a finding that supports a polygenic architecture of species boundaries. 
    more » « less
  2. Abstract

    Early lineage diversification is central to understand what mutational events drive species divergence. Particularly, gene misregulation in interspecific hybrids can inform about what genes and pathways underlie hybrid dysfunction. InDrosophilahybrids, how regulatory evolution impacts different reproductive tissues remains understudied. Here, we generate a new genome assembly and annotation inDrosophila willistoniand analyse the patterns of transcriptome divergence between two allopatrically evolvedD. willistonisubspecies, their male sterile and female fertile hybrid progeny across testis, male accessory gland, and ovary. Patterns of transcriptome divergence and modes of regulatory evolution were tissue‐specific. Despite no indication for cell‐type differences in hybrid testis, this tissue exhibited the largest magnitude of expression differentiation between subspecies and between parentals and hybrids. No evidence for anomalous dosage compensation in hybrid male tissues was detected nor was a differential role for the neo‐ and the ancestral arms of theD. willistoni Xchromosome. Compared to the autosomes, theXchromosome appeared enriched for transgressively expressed genes in testis despite being the least differentiated in expression between subspecies. Evidence for fine genome clustering of transgressively expressed genes suggests a role of chromatin structure on hybrid gene misregulation. Lastly, transgressively expressed genes in the testis of the sterile male progeny were enriched for GO terms not typically associated with sperm function, instead hinting at anomalous development of the reproductive tissue. Our thorough tissue‐level portrait of transcriptome differentiation between recently divergedD. willistonisubspecies and their hybrids provides a more nuanced view of early regulatory changes during speciation.

     
    more » « less
  3. Abstract

    Interactions between extrinsic factors, such as disruptive selection and intrinsic factors, such as genetic incompatibilities among loci, often contribute to the maintenance of species boundaries. The relative roles of these factors in the establishment of reproductive isolation can be examined using species pairs characterized by gene flow throughout their divergence history. We investigated the process of speciation and the maintenance of species boundaries betweenPinus strobiformisandPinus flexilis. Utilizing ecological niche modelling, demographic modelling and genomic cline analyses, we illustrated a divergence history with continuous gene flow. Our results supported an abundance of advanced generation hybrids and a lack of loci exhibiting steep transition in allele frequency across the hybrid zone. Additionally, we found evidence for climate‐associated variation in the hybrid index and niche divergence between parental species and the hybrid zone. These results are consistent with extrinsic factors, such as climate, being an important isolating mechanism. A build‐up of intrinsic incompatibilities and of coadapted gene complexes is also apparent, although these appear to be in the earliest stages of development. This supports previous work in coniferous species demonstrating the importance of extrinsic factors in facilitating speciation. Overall, our findings lend support to the hypothesis that varying strength and direction of selection pressures across the long lifespans of conifers, in combination with their other life history traits, delays the evolution of strong intrinsic incompatibilities.

     
    more » « less
  4. Abstract Background

    Gene duplication events are critical for the evolution of new gene functions. Aristaless is a major regulator of distinct developmental processes. It is most known for its role during appendage development across animals. However, more recently other distinct biological functions have been described for this gene and its duplicates. Butterflies and moths have two copies ofaristaless,aristaless1(al1) andaristaless2(al2), as a result of a gene duplication event. Previous work inHeliconiushas shown that both copies appear to have novel functions related to wing color patterning. Here we expand our knowledge of the expression profiles associated with both ancestral and novel functions of Al1 across embryogenesis and wing pigmentation. Furthermore, we characterize Al2 expression, providing a comparative framework between gene copies within the same species, allowing us to understand the origin of new functions following gene duplication.

    Results

    Our work shows that the expression of both Al1 and Al2 is associated with the ancestral function of sensory appendage (leg, mouth, spines, and eyes) development in embryos. Interestingly, Al1 exhibits higher expression earlier in embryogenesis while the highest levels of Al2 expression are shifted to later stages of embryonic development. Furthermore, Al1 localization appears extranuclear while Al2 co-localizes tightly with nuclei earlier, and then also expands outside the nucleus later in development. Cellular expression of Al1 and Al2 in pupal wings is broadly consistent with patterns observed during embryogenesis. We also describe, for the first time, how Al1 localization appears to correlate with zones of anterior/posterior elongation of the body during embryonic growth, showcasing a possible new function related to Aristaless’ previously described role in appendage extension.

    Conclusions

    Overall, our data suggest that while both gene copies play a role in embryogenesis and wing pigmentation, the duplicates have diverged temporally and mechanistically across those functions. Our study helps clarify principles behind sub-functionalization and gene expression evolution associated with developmental functions following gene duplication events.

     
    more » « less
  5. Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis- regulatory variation of bric a brac ( bab ) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation. 
    more » « less