skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of morphology in defect formation and photo-induced carrier instabilities in amorphous indium oxide
Ab initio molecular dynamics liquid-quench simulations and hybrid density functional calculations are performed to model the effects of room-temperature atomic fluctuations and photo-illumination on the structural and electronic properties of amorphous sub-stoichiometric In 2 O 2.96 . A large configurational ensemble is employed to reliably predict the distribution of localized defects as well as their response to the thermal and light activation. The results reveal that the illumination effects on the carrier concentration are greater in amorphous configurations with shorter In–O bond length and reduced polyhedral sharing as compared to the structures with a more uniform morphology. The obtained correlation between the photo-induced carrier density and the reduction in the number of fully coordinated In-atoms implies that metal oxides with a significant fraction of crystalline/amorphous interfaces would show a more pronounced response to illumination. Photo-excitation also produces In–O 2 –In defects that have not been previously found in sub-stoichiometric amorphous oxides; these defects are responsible for carrier instabilities due to overdoping.  more » « less
Award ID(s):
1729779 1919789
PAR ID:
10402366
Author(s) / Creator(s):
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
26
ISSN:
0003-6951
Page Range / eLocation ID:
261902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ultrathin 2D metal oxides are a high‐performance class of transparent conducting materials capable of overcoming the traditional limitations of inorganic flexible electronics. The low temperature, thermodynamically favorable synthesis of 2D oxides at liquid metal interfaces offers the potential for printing these materials over large areas at unprecedented speeds with sub‐nanometer scale precision. However, these native oxides are sub‐stoichiometric and highly conductive, so new strategies are needed that can precisely engineer the electrostatics and enhance stability. In this work, the crystalline vs. amorphous phase of 2D oxides is engineered via alloying of ternary In1‐ySnyOxand ultralow deposition temperatures (120–160 °C) are afforded by In‐Sn eutectics. This approach is extended to rapid assembly of nanoscale (3–5 nm per layer) vertical 2D homojunctions with electrostatically favorable grading from high density of states front channels to lower density of states back‐channels. Detailed materials characterization reveals how this platform enhances electron mobility while improving resilience under bias‐stress in metal oxide transistors. Devices based on amorphous 2D oxide homojunctions with high‐k sol‐gel ZrOxdielectrics achieve excellent electron mobility (30 cm2/V·s), steep switching (SS of 100 mV dec−1), Ion/offof 107and 10X reduced bias‐stress shifts, presenting an ideal strategy for high‐performance flexible oxide electronics. 
    more » « less
  2. We report a reversible photo-induced doping effect in two-dimensional (2D) tungsten diselenide (WSe 2 ) field effect transistors on hexagonal boron nitride (h-BN) substrates under low-intensity visible light illumination (∼10 nW μm −2 ). Our experimental results have shown that this reversible doping process is mainly attributed to two types of defects in h-BN substrates. Moreover, the photo-doped WSe 2 transistors can be stable for more than one week in a dark environment and maintain the high on/off ratio (10 8 ) and carrier mobility, since there are no additional impurities involved during the photo-induced doping process to increase the columbic scattering in the conducting channel. These fundamental studies not only provide an accessible strategy to control the charge doping level and then to achieve a writing/erasing process in 2D transistors, but also shed light on the defect states and interfaces in 2D materials. 
    more » « less
  3. Abstract 17 MeV proton irradiation at fluences from 3–7 × 1013cm−2of vertical geometry NiO/β-Ga2O3heterojunction rectifiers produced carrier removal rates in the range 120–150 cm−1in the drift region. The forward current density decreased by up to 2 orders of magnitude for the highest fluence, while the reverse leakage current increased by a factor of ∼20. Low-temperature annealing methods are of interest for mitigating radiation damage in such devices where thermal annealing is not feasible at the temperatures needed to remove defects. While thermal annealing has previously been shown to produce a limited recovery of the damage under these conditions, athermal annealing by minority carrier injection from NiO into the Ga2O3has not previously been attempted. Forward bias annealing produced an increase in forward current and a partial recovery of the proton-induced damage. Since the minority carrier diffusion length is 150–200 nm in proton irradiated Ga2O3, recombination-enhanced annealing of point defects cannot be the mechanism for this recovery, and we suggest that electron wind force annealing occurs. 
    more » « less
  4. We present a review of the published experimental and simulation radiation damage results in Ga 2 O 3 . All of the polytypes of Ga 2 O 3 are expected to show similar radiation resistance as GaN and SiC, considering their average bond strengths. However, this is not enough to explain the orders of magnitude difference of the relative resistance to radiation damage of these materials compared to GaAs and dynamic annealing of defects is much more effective in Ga 2 O 3 . It is important to examine the effect of all types of radiation, given that Ga 2 O 3 devices will potentially be deployed both in space and terrestrial applications. Octahedral gallium monovacancies are the main defects produced under most radiation conditions because of the larger cross-section for interaction compared to oxygen vacancies. Proton irradiation introduces two main paramagnetic defects in Ga 2 O 3 , which are stable at room temperature. Charge carrier removal can be explained by Fermi-level pinning far from the conduction band minimum due to gallium interstitials (Ga i ), vacancies (V Ga ), and antisites (Ga O ). One of the most important parameters to establish is the carrier removal rate for each type of radiation, since this directly impacts the current in devices such as transistors or rectifiers. When compared to the displacement damage predicted by the Stopping and Range of Ions in Matter(SRIM) code, the carrier removal rates are generally much lower and take into account the electrical nature of the defects created. With few experimental or simulation studies on single event effects (SEE) in Ga 2 O 3 , it is apparent that while other wide bandgap semiconductors like SiC and GaN are robust against displacement damage and total ionizing dose, they display significant vulnerability to single event effects at high Linear Energy Transfer (LET) and at much lower biases than expected. We have analyzed the transient response of β -Ga 2 O 3 rectifiers to heavy-ion strikes via TCAD simulations. Using field metal rings improves the breakdown voltage and biasing those rings can help control the breakdown voltage. Such biased rings help in the removal of the charge deposited by the ion strike. 
    more » « less
  5. Microscopic mechanisms of the formation of H defects and their role in passivation of under-coordinated atoms, short- and long-range structural transformations, and the resulting electronic properties of amorphous In–Ga–O with In : Ga = 6 : 4 are investigated using computationally-intensive ab initio molecular dynamics simulations and accurate density-functional calculations. The results reveal a stark difference between H-passivation in covalent Si-based and ionic oxide semiconductors. Specifically, it is found that hydrogen doping triggers an extended bond reconfiguration and rearrangement in the network of shared polyhedra in the disordered oxide lattice, resulting in energy gains that outweigh passivation of dangling O-p-orbitals. The H-induced structural changes in the coordination and morphology favor a more uniform charge density distribution in the conduction band, in accord with the improved carrier mobility measured in H-doped In–Ga–O [W. Huang et al. , Proc. Natl. Acad. Sci. U. S. A. , 2020, 117 , 18231]. A detailed structural analysis helps interpret the observed wide range of infrared frequencies associated with H defects and also demonstrate that the room-temperature stability of OH defects is affected by thermal fluctuations in the surrounding lattice, promoting bond migration and bond switching behavior within a short picosecond time frame. 
    more » « less