skip to main content


Title: The Second Radio Synchrotron Background Workshop: Conference Summary and Report
Abstract

We summarize the second radio synchrotron background workshop, which took place on 2022 June 15–17 in Barolo, Italy. This meeting was convened because available measurements of the diffuse radio zero level continue to suggest that it is several times higher than can be attributed to known Galactic and extragalactic sources and processes, rendering it the least well-understood electromagnetic background at present and a major outstanding question in astrophysics. The workshop agreed on the next priorities for investigations of this phenomenon, which include searching for evidence of the radio Sunyaev–Zel’dovich effect, carrying out cross-correlation analyses of radio emission with other tracers, and supporting the completion of the 310 MHz absolutely calibrated sky map project.

 
more » « less
NSF-PAR ID:
10402381
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Publications of the Astronomical Society of the Pacific
Volume:
135
Issue:
1045
ISSN:
0004-6280
Page Range / eLocation ID:
Article No. 036001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Summary

    The increasing prevalence and importance of machine learning in biological research have created a need for machine learning training resources tailored towards biological researchers. However, existing resources are often inaccessible, infeasible or inappropriate for biologists because they require significant computational and mathematical knowledge, demand an unrealistic time-investment or teach skills primarily for computational researchers. We created the Machine Learning for Biologists (ML4Bio) workshop, a short, intensive workshop that empowers biological researchers to comprehend machine learning applications and pursue machine learning collaborations in their own research. The ML4Bio workshop focuses on classification and was designed around three principles: (i) emphasizing preparedness over fluency or expertise, (ii) necessitating minimal coding and mathematical background and (iii) requiring low time investment. It incorporates active learning methods and custom open-source software that allows participants to explore machine learning workflows. After multiple sessions to improve workshop design, we performed a study on three workshop sessions. Despite some confusion around identifying subtle methodological flaws in machine learning workflows, participants generally reported that the workshop met their goals, provided them with valuable skills and knowledge and greatly increased their beliefs that they could engage in research that uses machine learning. ML4Bio is an educational tool for biological researchers, and its creation and evaluation provide valuable insight into tailoring educational resources for active researchers in different domains.

    Availability and implementation

    Workshop materials are available at https://github.com/carpentries-incubator/ml4bio-workshop and the ml4bio software is available at https://github.com/gitter-lab/ml4bio.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. ABSTRACT We present the first targeted measurement of the power spectrum of anisotropies of the radio synchrotron background, at 140 MHz, where it is the overwhelmingly dominant photon background. This measurement is important for understanding the background level of radio sky brightness, which is dominated by steep-spectrum synchrotron radiation at frequencies below ν ∼ 0.5 GHz and has been measured to be significantly higher than that produced by known classes of extragalactic sources and most models of Galactic halo emission. We determine the anisotropy power spectrum on scales ranging from 2° to 0.2 arcmin with Low-Frequency Array observations of two 18-deg2 fields – one centred on the Northern hemisphere’s coldest patch of radio sky where the Galactic contribution is smallest and the other offset from that location by 15°. We find that the anisotropy power is higher than that attributable to the distribution of point sources above 100 $\mu$Jy in flux. This level of radio anisotropy power indicates that if it results from point sources, those sources are likely at low fluxes and incredibly numerous, and likely clustered in a specific manner. 
    more » « less
  3. ABSTRACT

    Radio emission has been detected from tens of white dwarfs, in particular in accreting systems. Additionally, radio emission has been predicted as a possible outcome of a planetary system around a white dwarf. We searched for 3 GHz radio continuum emission in 846 000 candidate white dwarfs previously identified in Gaia using the Very Large Array Sky Survey (VLASS) Epoch 1 Quick Look Catalogue. We identified 13 candidate white dwarfs with a counterpart in VLASS within 2 arcsec. Five of those were found not to be white dwarfs in follow-up or archival spectroscopy, whereas seven others were found to be chance alignments with a background source in higher resolution optical or radio images. The remaining source, WDJ204259.71+152108.06, is found to be a white dwarf and M-dwarf binary with an orbital period of 4.1 d and long-term stochastic optical variability, as well as luminous radio and X-ray emission. For this binary, we find no direct evidence of a background contaminant, and a chance alignment probability of only ≈2 per cent. However, other evidence points to the possibility of an unfortunate chance alignment with a background radio and X-ray emitting quasar, including an unusually poor Gaia DR3 astrometric solution for this source. With at most one possible radio emitting white dwarf found, we conclude that strong (≳1–3 mJy) radio emission from white dwarfs in the 3 GHz band is virtually non-existent outside of interacting binaries.

     
    more » « less
  4. ABSTRACT

    The origin of the radio synchrotron background (RSB) is currently unknown. Its understanding might have profound implications in fundamental physics or might reveal a new class of radio emitters. In this work, we consider the scenario in which the RSB is due to extragalactic radio sources and measure the angular cross-correlation of Low-Frequency Array (LOFAR) images of the diffuse radio sky with matter tracers at different redshifts, provided by galaxy catalogues and cosmic microwave background lensing. We compare these measured cross-correlations to those expected for models of RSB sources. We find that low-redshift populations of discrete sources are excluded by the data, while higher redshift explanations are compatible with available observations. We also conclude that at least 20 per cent of the RSB surface brightness level must originate from populations tracing the large-scale distribution of matter in the Universe, indicating that at least this fraction of the RSB is of extragalactic origin. Future measurements of the correlation between the RSB and tracers of high-redshift sources will be crucial to constraining the source population of the RSB.

     
    more » « less
  5. Abstract

    Young children are capable of engaging in scientific and mathematical thinking, but often have few opportunities to use math as a tool for understanding the world. This article describes the development and implementation of a museum‐based after‐school workshop that introduced young children and their families to data science, an applied field that involves real‐world observations. Through three iterations of the workshop, the museum developed strategies for engaging families in interest‐driven cycles of data collection, organization, and interpretation. The workshop used design and making to motivate exploration of data and highlight the utility of mathematics for answering questions and guiding decisions. Children (ages 5–8) gathered data about museum exhibits (including size, features, visitors’ preferences, etc.) and applied what they learned to create models of their own exhibit ideas. We discuss the theoretical basis for the program, the process by which it was iteratively developed, and the final structure of the workshop activities and curriculum.

     
    more » « less