skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imaging in lossy media
Abstract We study the effects of absorption in the medium on synthetic aperture imaging. We model absorption using the loss tangent, which is the imaginary part of the relative dielectric permittivity, and study two cases: (i) the loss tangent is known and (ii) the loss tangent is unknown. When the loss tangent is known and used in Kirchhoff migration (KM), we find that images of targets are range-shifted by approximately a central wavelength so that their predicted locations are closer to the synthetic aperture than they actually are. In contrast, we find that when the medium is unknown, the KM image does not exhibit this range-shift. Hence, we determine that it is better to not make use of any knowledge of the absorption when imaging. Using a recently developed transformation of KM images, which we call reciprocal-KM (rKM), we achieve tunably high-resolution images of targets through adjusting the value of a user-defined parameterε. When rKM is applied to an imaging region containing two targets, we find that their predicted locations shift, especially in range, but within a fraction of central wavelength of their true locations.  more » « less
Award ID(s):
1840265
PAR ID:
10402383
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Inverse Problems
Volume:
39
Issue:
5
ISSN:
0266-5611
Page Range / eLocation ID:
Article No. 054002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a dispersive point target model based on scattering by a particle in the far-field. The synthetic aperture imaging problem is then expanded to identify these targets and recover their locations and frequency dependent reflectivities. We show that Kirchhoff migration (KM) is able to identify dispersive point targets in an imaging region. However, KM predicts target locations that are shifted in range from their true locations. We derive an estimate for this range shift for a single target. We also show that because of this range shift we cannot recover the complex-valued frequency dependent reflectivity, but we can recover its absolute value and hence the radar cross-section (RCS) of the target. Simulation results show that we can detect, recover the approximate location, and recover the RCS for dispersive point targets thereby opening opportunities to classifying important differences between multiple targets such as their sizes or material compositions. 
    more » « less
  2. Motivated by applications in unmanned aerial based ground penetrating radar for detecting buried landmines, we consider the problem of imaging small point like scatterers situated in a lossy medium below a random rough surface. Both the random rough surface and the absorption in the lossy medium significantly impede the target detection and imaging process. Using principal component analysis we effectively remove the reflection from the air‐soil interface. We then use a modification of the classical synthetic aperture radar imaging functional to image the targets. This imaging method introduces a user‐defined parameter,δ, which scales the resolution by allowing for target localization with sub wavelength accuracy. Numerical results in two dimensions illustrate the robustness of the approach for imaging multiple targets. However, the depth at which targets are detectable is limited due to the absorption in the lossy medium. 
    more » « less
  3. Abstract We have recently introduced a modification of the multiple signal classification method for synthetic aperture radar. This method incorporates a user‐defined parameter,ϵ, that allows for tunable quantitative high‐resolution imaging. However, this method requires relatively large single‐to‐noise ratios (SNR) to work effectively. Here, we first identify the fundamental mechanism in that method that produces high‐resolution images. Then we introduce a modification to Kirchhoff Migration (KM) that uses the same mechanism to produce tunable, high‐resolution images. This modified KM method can be applied to low SNR measurements. We show simulation results that demonstrate the features of this method. 
    more » « less
  4. Abstract We conducted an all‐sky imaging transient search with the Owens Valley Radio Observatory Long Wavelength Array (OVRO‐LWA) data collected during the Perseid meteor shower in 2018. The data collection during the meteor shower was motivated to conduct a search for intrinsic radio emission from meteors below 60 MHz known as the meteor radio afterglows (MRAs). The data collected were calibrated and imaged using the core array to obtain lower angular resolution images of the sky. These images were input to a pre‐existing LWA transient search pipeline to search for MRAs as well as cosmic radio transients. This search detected 5 MRAs and did not find any cosmic transients. We further conducted peeling of bright sources, near‐field correction, visibility differencing and higher angular resolution imaging using the full array for these 5 MRAs. These higher angular resolution images were used to study their plasma emission structures and monitor their evolution as a function of frequency and time. With higher angular resolution imaging, we resolved the radio emission size scales to less than 1 km physical size at 100 km heights. The spectral index mapping of one of the long duration event showed signs of diffusion of plasma within the meteor trails. The unpolarized emission from the resolved radio components suggest resonant transition radiation as the possible radiation mechanism of MRAs. 
    more » « less
  5. Abstract We present a model for atmospheric absorption of solar ultraviolet (UV) radiation. The initial motivation for this work is to predict this effect and correct it in Sounding Rocket (SR) experiments. In particular, the Full-sun Ultraviolet Rocket Spectrograph (FURST) is anticipated to launch in mid-2023. FURST has the potential to observe UV absorption while imaging solar spectra between 120-181 nm, at a resolution of ℛ > 2 ⋅ 10 4 ( Δ V < ± 15 km / s ) , and at altitudes of between ≈ 110-255 km. This model uses estimates for density and temperature, as well as laboratory measurements of the absorption cross-section, to predict the UV absorption of solar radiation at high altitudes. Refraction correction is discussed and partially implemented but is negligible for the results presented. Absorption by molecular Oxygen is the primary driver within the UV spectral range of our interest. The model is built with a wide range of applications in mind. The primary result is a method for inversion of the absorption cross-section from images obtained during an instrument flight, even if atmospheric observations were not initially intended. The potential to obtain measurements of atmospheric properties is an exciting prospect, especially since sounding rockets are the only method currently available for probing this altitude in-situ . Simulation of noisy spectral images along the FURST flight profile is performed using data from the High-Resolution Telescope and Spectrograph (HRTS) SR and the FISM2 model for comparison. Analysis of these simulated signals allows us to capture the Signal-to-Noise Ratio (SNR) of FURST and the capability to measure atmospheric absorption properties as a function of altitude. Based on the prevalence of distinct spectral features, our calculations demonstrate that atmospheric absorption may be used to perform wavelength calibration from in-flight data. 
    more » « less