skip to main content


Title: State-to-state rate coefficients for HCS+ in rotationally inelastic collisions with H2 at low temperatures
ABSTRACT

HCS+ ions have been detected in several regions of the interstellar medium (ISM), but an accurate determination of the chemical-physical conditions in the molecular clouds where this molecule is observed requires detailed knowledge of the collisional rate coefficients with the most common colliders in those environments. In this work, we study the dynamics of rotationally inelastic collisions of HCS+ + H2 at low temperature, and report, for the first time, a set of rate coefficients for this system. We used a recently developed potential energy surface for the HCS+–H2 van der Waals complex and computed state-to-state rotational rate coefficients for the lower rotational states of HCS+ in collision with both para- and ortho-H2, analysing the influence of the computed rate coefficients on the determination of critical densities. Additionally, the computed rate coefficients are compared with those obtained by scaling the ones from HCS+ in collision with He (an approximation that is sometimes used when data is lacking), and large differences are found. Furthermore, the approximation of using the rates for the HCO+ + H2 collision as a rough approximation for those of the HCS+ + H2 system is also evaluated. Finally, the complete set of de-excitation rate coefficients for the lowest 30 rotational states of HCS+ by collision with H2 is reported from 5 to 100 K.

 
more » « less
NSF-PAR ID:
10402545
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 5546-5551
Size(s):
["p. 5546-5551"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    This paper presents rate coefficients for transitions between rotational levels of the A-type and E-type nuclear spin modifications of methanol induced by collisions with molecular hydrogen. These rate coefficients are required for an accurate determination of methanol abundance in the interstellar medium, where local thermodynamic equilibrium conditions generally do not apply. Time-independent close-coupling quantum scattering calculations have been employed to calculate cross-sections and rate coefficients for the (de-)excitation of methanol in collisions with para- and ortho-H2. These calculations utilized a potential energy surface (PES) for the interaction of methanol with H2 recently computed by the explicitly correlated CCSD(T)-F12a coupled-cluster method that employed a correlation-consistent aug-cc-pVTZ basis. Rate coefficients for temperatures ranging from 3 to 250 K were calculated for all transitions among the first 76 rotational levels of both A-type and E-type methanol, whose energies are less than or equal to 170 K. These rate coefficients are compared with those by Rabli and Flower who carried out coupled-state calculations using a PES computed by second-order many-body perturbation theory. Simple radiative transfer calculations using the present set of rate coefficients are also reported and compared with such calculations using the rate coefficients previously computed by Rabli and Flower.

     
    more » « less
  2. Aims. We present new calculations of collision cross sections for state-to-state transitions between the rotational states in an H 2 O + H 2 O system, which are used to generate a new database of collisional rate coefficients for cometary and planetary applications. Methods. Calculations were carried out using a mixed quantum-classical theory approach that is implemented in the code MQCT. The large basis set of rotational states used in these calculations permits us to predict thermally averaged cross sections for 441 transitions in para- and ortho-H 2 O in a broad range of temperatures. Results. It is found that all state-to-state transitions in the H 2 O + H 2 O system split into two well-defined groups, one with higher cross-section values and lower energy transfer, which corresponds to the dipole-dipole driven processes. The other group has smaller cross sections and higher energy transfer, driven by higher-order interaction terms. We present a detailed analysis of the theoretical error bars, and we symmetrized the state-to-state transition matrixes to ensure that excitation and quenching processes for each transition satisfy the principle of microscopic reversibility. We also compare our results with other data available from the literature for H 2 O + H 2 O collisions. 
    more » « less
  3. ABSTRACT

    Observations of transitions between the hyperfine levels of the hydroxyl radical (OH) can provide crucial information on the physical conditions in interstellar clouds. Accurate modelling of the spectra requires calculated rate coefficients for the excitation of OH by H atoms, which is often present in molecular clouds in addition to the dominant H2 molecule. In this work, rate coefficients for the (de-)excitation of hyperfine levels of OH through collisions with hydrogen atoms are presented. In previous work, nuclear-spin-free scattering calculations were carried out; these took account of the fact that four electronic states (1A′, 1A″, 3A′, and 3A″) arise from the interaction of OH(X2Π) with H(2S). Because of the deep H2O($\tilde{X}^1A^{\prime }$) well, inelastic transitions can occur through direct collisions or by formation and decay of a collision complex. The rates of collision-induced hyperfine transitions were computed by the recoupling method and the MJ randomization approximations, respectively. These data will be useful in astrophysical models of OH excitation.

     
    more » « less
  4. ABSTRACT Rate coefficients for rotational transitions in HD induced by H2 impact for rotational levels of HD j ≤ 8 and temperatures 10 K ≤ T ≤ 5000 K are reported. The quantum mechanical close-coupling (CC) method and the coupled-states (CS) decoupling approximation are used to obtain the cross-sections employing the most recent highly accurate H2–H2 potential energy surface (PES). Our results are in good agreement with previous calculations for low-lying rotational transitions The cooling efficiency of HD compared with H2 and astrophysical applications are briefly discussed. 
    more » « less
  5. Abstract

    In this article, we analyze a discrete‐time queue that is motivated from studying hospital inpatient flow management, where the customer count process captures the midnight inpatient census. The stationary distribution of the customer count has no explicit form and is difficult to compute in certain parameter regimes. Using the Stein's method framework, we identify a continuous random variable to approximate the steady‐state customer count. The continuous random variable corresponds to the stationary distribution of a diffusion process withstate‐dependentdiffusion coefficients. We characterize the error bounds of this approximation under a variety of system load conditions—from lightly loaded to heavily loaded. We also identify the critical role that the service rate plays in the convergence rate of the error bounds. We perform extensive numerical experiments to support the theoretical findings and to demonstrate the approximation quality. In particular, we show that our approximation performs better than those based on constant diffusion coefficients when the number of servers is small, which is relevant to decision making in a single hospital ward.

     
    more » « less