skip to main content

Title: Deformations and moduli of irregular canonical covers with $$K^2=4p_g-8$$

In this article, we study the moduli of irregular surfaces of general type with at worst canonical singularities satisfying$$K^2 = 4p_g-8$$K2=4pg-8, for any even integer$$p_g\ge 4$$pg4. These surfaces also have unbounded irregularityq. We carry out our study by investigating the deformations of the canonical morphism$$\varphi :X\rightarrow {\mathbb {P}}^N$$φ:XPN, where$$\varphi $$φis a quadruple Galois cover of a smooth surface of minimal degree. These canonical covers are classified in Gallego and Purnaprajna (Trans Am Math Soc 360(10):5489-5507, 2008) into four distinct families, one of which is the easy case of a product of curves. The main objective of this article is to study the deformations of the other three, non trivial, unbounded families. We show that any deformation of$$\varphi $$φfactors through a double cover of a ruled surface and, hence, is never birational. More interestingly, we prove that, with two exceptions, a general deformation of$$\varphi $$φis two-to-one onto its image, whose normalization is a ruled surface of appropriate irregularity. We also show that, with the exception of one family, the deformations ofXare unobstructed even though$$H^2(T_X)$$H2(TX)does not vanish. Consequently,Xbelongs to a unique irreducible component of the Gieseker moduli space. These irreducible components are uniruled. As a result of all this, we show the existence of infinitely many moduli spaces, satisfying the strict Beauville inequality$$p_g > 2q-4$$pg>2q-4, with an irreducible component that has a proper quadruple sublocus where the degree of the canonical morphism jumps up. These components are above the Castelnuovo line, but nonetheless parametrize surfaces with non birational canonical morphisms. The existence of jumping subloci is a contrast with the moduli of surfaces with$$K^2 = 2p_g- 4$$K2=2pg-4, studied by Horikawa. Irreducible moduli components with a jumping sublocus also present a similarity and a difference to the moduli of curves of genus$$g\ge 3$$g3, for, like in the case of curves, the degree of the canonical morphism goes down outside a closed sublocus but, unlike in the case of curves, it is never birational. Finally, our study shows that there are infinitely many moduli spaces with an irreducible component whose general elements have non birational canonical morphism and another irreducible component whose general elements have birational canonical map.

more » « less
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Revista Matemática Complutense
Medium: X Size: p. 551-602
["p. 551-602"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The double differential cross sections of the Drell–Yan lepton pair ($$\ell ^+\ell ^-$$+-, dielectron or dimuon) production are measured as functions of the invariant mass$$m_{\ell \ell }$$m, transverse momentum$$p_{\textrm{T}} (\ell \ell )$$pT(), and$$\varphi ^{*}_{\eta }$$φη. The$$\varphi ^{*}_{\eta }$$φηobservable, derived from angular measurements of the leptons and highly correlated with$$p_{\textrm{T}} (\ell \ell )$$pT(), is used to probe the low-$$p_{\textrm{T}} (\ell \ell )$$pT()region in a complementary way. Dilepton masses up to 1$$\,\text {Te\hspace{-.08em}V}$$TeVare investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$m_{\ell \ell }$$mranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$\,\text {fb}^{-1}$$fb-1of proton–proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.

    more » « less
  2. Abstract

    For polyhedral constrained optimization problems and a feasible point$$\textbf{x}$$x, it is shown that the projection of the negative gradient on the tangent cone, denoted$$\nabla _\varOmega f(\textbf{x})$$Ωf(x), has an orthogonal decomposition of the form$$\varvec{\beta }(\textbf{x}) + \varvec{\varphi }(\textbf{x})$$β(x)+φ(x). At a stationary point,$$\nabla _\varOmega f(\textbf{x}) = \textbf{0}$$Ωf(x)=0so$$\Vert \nabla _\varOmega f(\textbf{x})\Vert $$Ωf(x)reflects the distance to a stationary point. Away from a stationary point,$$\Vert \varvec{\beta }(\textbf{x})\Vert $$β(x)and$$\Vert \varvec{\varphi }(\textbf{x})\Vert $$φ(x)measure different aspects of optimality since$$\varvec{\beta }(\textbf{x})$$β(x)only vanishes when the KKT multipliers at$$\textbf{x}$$xhave the correct sign, while$$\varvec{\varphi }(\textbf{x})$$φ(x)only vanishes when$$\textbf{x}$$xis a stationary point in the active manifold. As an application of the theory, an active set algorithm is developed for convex quadratic programs which adapts the flow of the algorithm based on a comparison between$$\Vert \varvec{\beta }(\textbf{x})\Vert $$β(x)and$$\Vert \varvec{\varphi }(\textbf{x})\Vert $$φ(x).

    more » « less
  3. Abstract

    The azimuthal ($$\Delta \varphi $$Δφ) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at$$\sqrt{s_{\mathrm{{NN}}}} = 5.02$$sNN=5.02TeV. Results are reported for electrons with transverse momentum$$44<pT<16$$\textrm{GeV}/c$$GeV/c and pseudorapidity$$|\eta |<0.6$$|η|<0.6. The associated charged particles are selected with transverse momentum$$11<pT<7$$\textrm{GeV}/c$$GeV/c, and relative pseudorapidity separation with the leading electron$$|\Delta \eta | < 1$$|Δη|<1. The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The$$\Delta \varphi $$Δφdistribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators.

    more » « less
  4. Abstract

    We introduce a family of Finsler metrics, called the$$L^p$$Lp-Fisher–Rao metrics$$F_p$$Fp, for$$p\in (1,\infty )$$p(1,), which generalizes the classical Fisher–Rao metric$$F_2$$F2, both on the space of densities$${\text {Dens}}_+(M)$$Dens+(M)and probability densities$${\text {Prob}}(M)$$Prob(M). We then study their relations to the Amari–C̆encov$$\alpha $$α-connections$$\nabla ^{(\alpha )}$$(α)from information geometry: on$${\text {Dens}}_+(M)$$Dens+(M), the geodesic equations of$$F_p$$Fpand$$\nabla ^{(\alpha )}$$(α)coincide, for$$p = 2/(1-\alpha )$$p=2/(1-α). Both are pullbacks of canonical constructions on$$L^p(M)$$Lp(M), in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of$$\alpha $$α-geodesics as being energy minimizing curves. On$${\text {Prob}}(M)$$Prob(M), the$$F_p$$Fpand$$\nabla ^{(\alpha )}$$(α)geodesics can still be thought as pullbacks of natural operations on the unit sphere in$$L^p(M)$$Lp(M), but in this case they no longer coincide unless$$p=2$$p=2. Using this transformation, we solve the geodesic equation of the$$\alpha $$α-connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman–Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of$$F_p$$Fp, and study their relation to$$\nabla ^{(\alpha )}$$(α).

    more » « less
  5. Abstract

    It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$Lβ,γ=-divDd+1+γ-nassociated to a domain$$\Omega \subset {\mathbb {R}}^n$$ΩRnwith a uniformly rectifiable boundary$$\Gamma $$Γof dimension$$d < n-1$$d<n-1, the now usual distance to the boundary$$D = D_\beta $$D=Dβgiven by$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$Dβ(X)-β=Γ|X-y|-d-βdσ(y)for$$X \in \Omega $$XΩ, where$$\beta >0$$β>0and$$\gamma \in (-1,1)$$γ(-1,1). In this paper we show that the Green functionGfor$$L_{\beta ,\gamma }$$Lβ,γ, with pole at infinity, is well approximated by multiples of$$D^{1-\gamma }$$D1-γ, in the sense that the function$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$|D(ln(GD1-γ))|2satisfies a Carleson measure estimate on$$\Omega $$Ω. We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear).

    more » « less