skip to main content


Title: Online identity as a collective labeling process
Abstract

Expressing identity socially involves a balance between conformity and innovation. One can adopt existing labels to express belonging to a certain community or introduce new labels to express an individual sense of identity. In such a process of co-creation, the existing identity labels of a community shape one’s sense of identity, while individual expression changes that of a community. Social media has introduced new opportunities to study the expression of collective identity. Here we study the group behavior of individuals defining their identities with hashtag self-labels in their Twitter profiles from mid-2017 through 2019. These timelines of personal self-labeling show behavior incorporating innovation, conservation, and social conformity when defining self. We show that the collective co-labeling of popular concepts in the context of identity, such as#resistand#maga, follow the dynamics of a modified Yule–Simon model balancing novelty and conformity. The dynamics of identity expression resemble the collective tagging processes of folksonomies, indicating a similarity between the collective tagging of external objects and the collective labeling of ourselves. Our work underpins a better understanding of how online environments mediate the evolution of collective identity which plays an increasingly important role in the establishment of community values and identity politics.

 
more » « less
NSF-PAR ID:
10405057
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Complexity
Volume:
4
Issue:
2
ISSN:
2632-072X
Page Range / eLocation ID:
Article No. 025003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mass communication over social media can drive rapid changes in our sense of collective identity. Hashtags in particular have acted as powerful social coordinators, playing a key role in organizing social movements like the Gezi park protests, Occupy Wall Street,#metoo, and#blacklivesmatter. Here we quantify collective identity from the use of hashtags as self-labels in over 85,000 actively-maintained Twitter user profiles spanning 2017–2019. Collective identities emerge from a graph model of individuals’ overlapping self-labels, producing a hierarchy of graph clusters. Each cluster is bound together and characterized semantically by specific hashtags key to its formation. We define and apply two information-theoretic measures to quantify the strength of identities in the hierarchy. First we measure collective identity coherence to determine how integrated any identity is from local to global scales. Second, we consider the conspicuousness of any identity given its vocabulary versus the global identity map. Our work reveals a rich landscape of online identity emerging from the hierarchical alignment of uncoordinated self-labeling actions.

     
    more » « less
  2. Abstract Background

    Shame is a deeply painful emotion people feel when they perceive that they have fallen short of socially constructed expectations. In this study,professional shamerefers to shame experiences that stem from people's perceptions that they have failed to meet expectations or standards that are relevant to their identities in a professional domain. While socially constructed expectations placed on engineering students have been implicitly addressed in the engineering education literature, they have rarely been the subject of specific inquiry.

    Purpose

    As part of a broader study on professional shame in engineering, we investigated the co‐construction of social worlds that place expectations on engineering students.

    Method

    We conducted 10 ethnographic focus groups with undergraduate engineering students from two universities. These groups were either heterogeneous or homogeneous, regarding racial and gender identity, to examine multiple social realities.

    Results

    We present significant findings related to engineering students' collective noticing, defining, and experiencing of social worlds. The findings give a sense of overlapping but distinct social realities among student groups and highlight how failing to meet expectations can contribute to deeply painful emotional responses. We also note when students' responses reproduce, resist, or redefine the broader cultural norms in which the students are embedded.

    Conclusions

    The study has implications for the theoretical exploration of shame, engineering education research on identity and diversity and inclusion, and the messaging and interactions in which the engineering education community engages.

     
    more » « less
  3. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  4. Abstract

    Significant advances in computational ethology have allowed the quantification of behaviour in unprecedented detail. Tracking animals in social groups, however, remains challenging as most existing methods can either capture pose or robustly retain individual identity over time but not both.

    To capture finely resolved behaviours while maintaining individual identity, we built NAPS (NAPS is ArUco Plus SLEAP), a hybrid tracking framework that combines state‐of‐the‐art, deep learning‐based methods for pose estimation (SLEAP) with unique markers for identity persistence (ArUco). We show that this framework allows the exploration of the social dynamics of the common eastern bumblebee (Bombus impatiens).

    We provide a stand‐alone Python package for implementing this framework along with detailed documentation to allow for easy utilization and expansion. We show that NAPS can scale to long timescale experiments at a high frame rate and that it enables the investigation of detailed behavioural variation within individuals in a group.

    Expanding the toolkit for capturing the constituent behaviours of social groups is essential for understanding the structure and dynamics of social networks. NAPS provides a key tool for capturing these behaviours and can provide critical data for understanding how individual variation influences collective dynamics.

     
    more » « less
  5. Abstract

    The desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning system for multi-animal pose tracking. This system enables versatile workflows for data labeling, model training and inference on previously unseen data. SLEAP features an accessible graphical user interface, a standardized data model, a reproducible configuration system, over 30 model architectures, two approaches to part grouping and two approaches to identity tracking. We applied SLEAP to seven datasets across flies, bees, mice and gerbils to systematically evaluate each approach and architecture, and we compare it with other existing approaches. SLEAP achieves greater accuracy and speeds of more than 800 frames per second, with latencies of less than 3.5 ms at full 1,024 × 1,024 image resolution. This makes SLEAP usable for real-time applications, which we demonstrate by controlling the behavior of one animal on the basis of the tracking and detection of social interactions with another animal.

     
    more » « less