skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fitness and functional landscapes of the E. coli RNase III gene rnc
Abstract How protein properties such as protein activity and protein essentiality affect the distribution of fitness effects (DFE) of mutations are important questions in protein evolution. Deep mutational scanning studies typically measure the effects of a comprehensive set of mutations on either protein activity or fitness. Our understanding of the underpinnings of the DFE would be enhanced by a comprehensive study of both for the same gene. Here, we compared the fitness effects and in vivo protein activity effects of ∼4,500 missense mutations in the E. coli rnc gene. This gene encodes RNase III, a global regulator enzyme that cleaves diverse RNA substrates including precursor ribosomal RNA and various mRNAs including its own 5’ untranslated region (5’UTR). We find that RNase III’s ability to cleave dsRNA is the most important determinant of the fitness effects of rnc mutations. The DFE of RNase III was bimodal, with mutations centered around neutral and deleterious effects, consistent with previously reported DFE’s of enzymes with a singular physiological role. Fitness was buffered to small effects on RNase III activity. The enzyme’s RNase III domain (RIIID), which contains the RNase III signature motif and all active site residues, was more sensitive to mutation than its dsRNA binding domain (dsRBD), which is responsible for recognition and binding to dsRNA. Differential effects on fitness and functional scores for mutations at highly conserved residues G97, G99, and F188 suggest that these positions may be important for RNase III cleavage specificity.  more » « less
Award ID(s):
2113019 1817646
PAR ID:
10402609
Author(s) / Creator(s):
;
Editor(s):
Echave, Julian
Date Published:
Journal Name:
Molecular Biology and Evolution
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Knowledge of the distribution of fitness effects (DFE) of mutations is critical to the understanding of protein evolution. Here, we describe methods for large-scale, systematic measurements of the DFE using growth competition and deep mutational scanning. We discuss techniques for producing comprehensive libraries of gene variants as well as provide necessary considerations for designing these experiments. Using these methods, we have constructed libraries containing over 18,000 variants, measured fitness effects of these mutations by deep mutational scanning, and verified the presence of fitness effects in individual variants. Our methods provide a high-throughput protocol for measuring biological fitness effects of mutations and the dependence of fitness effects on the environment. 
    more » « less
  2. López, Susana (Ed.)
    ABSTRACT The rotavirus polymerase VP1 mediates all stages of viral RNA synthesis within the confines of subviral particles and while associated with the core shell protein VP2. Transcription (positive-strand RNA [+RNA] synthesis) by VP1 occurs within double-layered particles (DLPs), while genome replication (double-stranded RNA [dsRNA] synthesis) by VP1 occurs within assembly intermediates. VP2 is critical for VP1 enzymatic activity; yet, the mechanism by which the core shell protein triggers polymerase function remains poorly understood. Structural analyses of transcriptionally competent DLPs show that VP1 is located beneath the VP2 core shell and sits slightly off-center from each of the icosahedral 5-fold axes. In this position, the polymerase is contacted by the core shell at 5 distinct surface-exposed sites, comprising VP1 residues 264 to 267, 547 to 550, 614 to 620, 968 to 980, and 1022 to 1025. Here, we sought to test the functional significance of these VP2 contact sites on VP1 with regard to polymerase activity. We engineered 19 recombinant VP1 (rVP1) proteins that contained single- or multipoint alanine mutations within each individual contact site and assayed them for the capacity to synthesize dsRNA in vitro in the presence of rVP2. Three rVP1 mutants (E265A/L267A, R614A, and D971A/S978A/I980A) exhibited diminished in vitro dsRNA synthesis. Despite their loss-of-function phenotypes, the mutants did not show major structural changes in silico, and they maintained their overall capacity to bind rVP2 in vitro via their nonmutated contact sites. These results move us toward a mechanistic understanding of rotavirus replication and identify precise VP2-binding sites on the polymerase surface that are critical for its enzymatic activation. IMPORTANCE Rotaviruses are important pathogens that cause severe gastroenteritis in the young of many animals. The viral polymerase VP1 mediates all stages of viral RNA synthesis, and it requires the core shell protein VP2 for its enzymatic activity. Yet, there are several gaps in knowledge about how VP2 engages and activates VP1. Here, we probed the functional significance of 5 distinct VP2 contact sites on VP1 that were revealed through previous structural studies. Specifically, we engineered alanine amino acid substitutions within each of the 5 VP1 regions and assayed the mutant polymerases for the capacity to synthesize RNA in the presence of VP2 in a test tube. Our results identified residues within 3 of the VP2 contact sites that are critical for robust polymerase activity. These results are important because they enhance the understanding of a key step of the rotavirus replication cycle. 
    more » « less
  3. Mesothelioma is a rare and aggressive cancer linked to asbestos exposure and characterized by rapid metastasis and poor prognosis. Inhibition of adenosine deaminase acting on dsRNA 2 (ADAR2) RNA binding but not ADAR2 editing has shown antitumor effects in mesothelioma. Natural compounds from the Traditional Chinese Medicine (TCM) database were docked to the RNA-binding interface of ADAR2’s second dsRNA binding domain (dsRBD2), and their drug-likeness and predicted safety were assessed. Eight ligands (ZINC000085597263, ZINC000085633079, ZINC000014649947, ZINC000034512861, ZINC000070454124, ZINC000085594944, ZINC000085633008, and ZINC000095909822) showed high binding affinity to dsRBD2 from molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations. Protein–ligand interactions were analyzed to identify key residues contributing to these binding affinities. Molecular dynamics (MD) simulations of dsRBD–ligand–RNA complexes revealed that four compounds (ZINC000085597263, ZINC000085633079, ZINC000014649947, and ZINC000034512861) had negative binding affinities to dsRBD2 in the presence of the RNA substrate GluR-2. Key residues, including Val164, Met165, Lys209, and Lys212, were crucial for ligand binding, even with RNA present, suggesting these compounds could inhibit dsRBD2’s RNA-binding function. The predicted biological activities of these compounds indicate potential anticancer properties, particularly for the treatment of mesothelioma. These compounds are structurally similar to known anti-mesothelioma agents or anticancer drugs, highlighting their therapeutic potential. Current mesothelioma treatments are limited. Optimization of these compounds, alone or in combination with current therapeutics, has potential for mesothelioma treatment. Additionally, five high-quality full-length ADAR2 models were developed. These models provide insights into ADAR2 function, mutation impacts, and potential areas for protein engineering to enhance stability, RNA-binding specificity, or protein interactions, particularly concerning dimerization or complex formation with other proteins and RNAs. 
    more » « less
  4. Kinetoplastid pathogens includingTrypanosoma brucei,T. cruzi, andLeishmaniaspecies, are early diverged, eukaryotic, unicellular parasites. Functional understanding of many proteins from these pathogens has been hampered by limited sequence homology to proteins from other model organisms. Here we describe the development of a high-throughput deep mutational scanning approach inT. bruceithat facilitates rapid and unbiased assessment of the impacts of many possible amino acid substitutions within a protein on cell fitness, as measured by relative cell growth. The approach leverages several molecular technologies: cells with conditional expression of a wild-type gene of interest and constitutive expression of a library of mutant variants, degron-controlled stabilization of I-SceI meganuclease to mediate highly efficient transfection of a mutant allele library, and a high-throughput sequencing readout for cell growth upon conditional knockdown of wild-type gene expression and exclusive expression of mutant variants. Using this method, we queried the effects of amino acid substitutions in the apparently non-catalytic RNase III-like domain of KREPB4 (B4), which is an essential component of the RNA Editing Catalytic Complexes (RECCs) that carry out mitochondrial RNA editing inT. brucei. We measured the impacts of thousands of B4 variants on bloodstream form cell growth and validated the most deleterious variants containing single amino acid substitutions. Crucially, there was no correlation between phenotypes and amino acid conservation, demonstrating the greater power of this method over traditional sequence homology searching to identify functional residues. The bloodstream form cell growth phenotypes were combined with structural modeling, RECC protein proximity data, and analysis of selected substitutions in procyclic formT. brucei. These analyses revealed that the B4 RNaseIII-like domain is essential for maintenance of RECC integrity and RECC protein abundances and is also involved in changes in RECCs that occur between bloodstream and procyclic form life cycle stages. 
    more » « less
  5. null (Ed.)
    Abstract The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the binding to the permissive cells. The receptor-binding domain (RBD) of SARS-CoV-2 S protein directly interacts with the human angiotensin-converting enzyme 2 (ACE2) on the host cell membrane. In this study, we used computational saturation mutagenesis approaches, including structure-based energy calculations and sequence-based pathogenicity predictions, to quantify the systemic effects of missense mutations on SARS-CoV-2 S protein structure and function. A total of 18 354 mutations in S protein were analyzed, and we discovered that most of these mutations could destabilize the entire S protein and its RBD. Specifically, residues G431 and S514 in SARS-CoV-2 RBD are important for S protein stability. We analyzed 384 experimentally verified S missense variations and revealed that the dominant pandemic form, D614G, can stabilize the entire S protein. Moreover, many mutations in N-linked glycosylation sites can increase the stability of the S protein. In addition, we investigated 3705 mutations in SARS-CoV-2 RBD and 11 324 mutations in human ACE2 and found that SARS-CoV-2 neighbor residues G496 and F497 and ACE2 residues D355 and Y41 are critical for the RBD–ACE2 interaction. The findings comprehensively provide potential target sites in the development of drugs and vaccines against COVID-19. 
    more » « less