skip to main content


Title: Assessment of lateral resolution of single random phase encoded lensless imaging systems

In this paper, we have used the angular spectrum propagation method and numerical simulations of a single random phase encoding (SRPE) based lensless imaging system, with the goal of quantifying the spatial resolution of the system and assessing its dependence on the physical parameters of the system. Our compact SRPE imaging system consists of a laser diode that illuminates a sample placed on a microscope glass slide, a diffuser that spatially modulates the optical field transmitting through the input object, and an image sensor that captures the intensity of the modulated field. We have considered two-point source apertures as the input object and analyzed the propagated optical field captured by the image sensor. The captured output intensity patterns acquired at each lateral separation between the input point sources were analyzed using a correlation between the captured output pattern for the overlapping point-sources, and the captured output intensity for the separated point sources. The lateral resolution of the system was calculated by finding the lateral separation values of the point sources for which the correlation falls below a threshold value of 35% which is a value chosen in accordance with the Abbe diffraction limit of an equivalent lens-based system. A direct comparison between the SRPE lensless imaging system and an equivalent lens-based imaging system with similar system parameters shows that despite being lensless, the performance of the SRPE system does not suffer as compared to lens-based imaging systems in terms of lateral resolution. We have also investigated how this resolution is affected as the parameters of the lensless imaging system are varied. The results show that SRPE lensless imaging system shows robustness to object to diffuser-to-sensor distance, pixel size of the image sensor, and the number of pixels of the image sensor. To the best of our knowledge, this is the first work to investigate a lensless imaging system’s lateral resolution, robustness to multiple physical parameters of the system, and comparison to lens-based imaging systems.

 
more » « less
Award ID(s):
2141473
NSF-PAR ID:
10402693
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
7
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 11213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we assess the noise-susceptibility of coherent macroscopic single random phase encoding (SRPE) lensless imaging by analyzing how much information is lost due to the presence of camera noise. We have used numerical simulation to first obtain the noise-free point spread function (PSF) of a diffuser-based SRPE system. Afterwards, we generated a noisy PSF by introducing shot noise, read noise and quantization noise as seen in a real-world camera. Then, we used various statistical measures to look at how the shared information content between the noise-free and noisy PSF is affected as the camera-noise becomes stronger. We have run identical simulations by replacing the diffuser in the lensless SRPE imaging system with lenses for comparison with lens-based imaging. Our results show that SRPE lensless imaging systems are better at retaining information between corresponding noisy and noiseless PSFs under high camera noise than lens-based imaging systems. We have also looked at how physical parameters of diffusers such as feature size and feature height variation affect the noise robustness of an SRPE system. To the best of our knowledge, this is the first report to investigate noise robustness of SRPE systems as a function of diffuser parameters and paves the way for the use of lensless SRPE systems to improve imaging in the presence of image sensor noise.

     
    more » « less
  2. We report a novel lensless on-chip microscopy platform based on near-field blind ptychographic modulation. In this platform, we place a thin diffuser in between the object and the image sensor for light wave modulation. By blindly scanning the unknown diffuser to different x – y positions, we acquire a sequence of modulated intensity images for quantitative object recovery. Different from previous ptychographic implementations, we employ a unit magnification configuration with a Fresnel number of ∼50 000, which is orders of magnitude higher than those of previous ptychographic setups. The unit magnification configuration allows us to have the entire sensor area, 6.4 mm by 4.6 mm, as the imaging field of view. The ultra-high Fresnel number enables us to directly recover the positional shift of the diffuser in the phase retrieval process, addressing the positioning accuracy issue plaguing regular ptychographic experiments. In our implementation, we use a low-cost, DIY scanning stage to perform blind diffuser modulation. Precise mechanical scanning that is critical in conventional ptychography experiments is no longer needed in our setup. We further employ an up-sampling phase retrieval scheme to bypass the resolution limit set by the imager pixel size and demonstrate a half-pitch resolution of 0.78 μm. We validate the imaging performance via in vitro cell cultures, transparent and stained tissue sections, and a thick biological sample. We show that the recovered quantitative phase map can be used to perform effective cell segmentation of a dense yeast culture. We also demonstrate 3D digital refocusing of the thick biological sample based on the recovered wavefront. The reported platform provides a cost-effective and turnkey solution for large field-of-view, high-resolution, and quantitative on-chip microscopy. It is adaptable for a wide range of point-of-care-, global-health-, and telemedicine-related applications. 
    more » « less
  3. Poor access to eye care is a major global challenge that could be ameliorated by low-cost, portable, and easy-to-use diagnostic technologies. Diffuser-based imaging has the potential to enable inexpensive, compact optical systems that can reconstruct a focused image of an object over a range of defocus errors. Here, we present a diffuser-based computational funduscope that reconstructs important clinical features of a model eye. Compared to existing diffuser-imager architectures, our system features an infinite-conjugate design by relaying the ocular lens onto the diffuser. This offers shift-invariance across a wide field-of-view (FOV) and an invariant magnification across an extended depth range. Experimentally, we demonstrate fundus image reconstruction over a 33°FOV and robustness to ±4D refractive error using a constant point-spread-function. Combined with diffuser-based wavefront sensing, this technology could enable combined ocular aberrometry and funduscopic screening through a single diffuser sensor.

     
    more » « less
  4. We report a new, to the best of our knowledge, lensless microscopy configuration by integrating the concepts of transverse translational ptychography and defocus multi-height phase retrieval. In this approach, we place a tilted image sensor under the specimen for introducing linearly increasing phase modulation along one lateral direction. Similar to the operation of ptychography, we laterally translate the specimen and acquire the diffraction images for reconstruction. Since the axial distance between the specimen and the sensor varies at different lateral positions, laterally translating the specimen effectively introduces defocus multi-height measurements while eliminating axial scanning. Lateral translation further introduces sub-pixel shift for pixel super-resolution imaging and naturally expands the field of view for rapid whole slide imaging. We show that the equivalent height variation can be precisely estimated from the lateral shift of the specimen, thereby addressing the challenge of precise axial positioning in conventional multi-height phase retrieval. Using a sensor with 1.67 µm pixel size, our low-cost and field-portable prototype can resolve the 690 nm linewidth on the resolution target. We show that a whole slide image of a blood smear with a120mm2field of view can be acquired in 18 s. We also demonstrate accurate automatic white blood cell counting from the recovered image. The reported approach may provide a turnkey solution for addressing point-of-care and telemedicine-related challenges.

     
    more » « less
  5. We report an angle-tilted, wavelength-multiplexed ptychographic modulation approach for multispectral lensless on-chip microscopy. In this approach, we illuminate the specimen with lights at five wavelengths simultaneously. A prism is added at the illumination path for spectral dispersion. Thus, lightwaves at different wavelengths hit the specimen at slightly different incident angles, breaking the ambiguities in mixed-state ptychographic reconstruction. At the detection path, we place a thin diffuser between the specimen and the monochromatic image sensor for encoding the spectral information into 2D intensity measurements. By scanning the sample to differentx−<#comment/>ypositions, we acquire a sequence of monochromatic images for reconstructing the five complex object profiles at the five wavelengths. An up-sampling procedure is integrated into the recovery process to bypass the resolution limit imposed by the imager pixel size. We demonstrate a half-pitch resolution of 0.55 µm using an image sensor with 1.85 µm pixel size. We also demonstrate quantitative and high-quality multispectral reconstructions of stained tissue sections for digital pathology applications.

     
    more » « less