skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Extrinsically reinforced hybrid speciation within Holarctic ermine ( Mustela spp.) produces an insular endemic
Abstract Aim

Refugial isolation during glaciation is an established driver of speciation; however, the opposing role of interglacial population expansion, secondary contact, and gene flow on the diversification process remains less understood. The consequences of glacial cycling on diversity are complex and especially so for archipelago species, which experience dramatic fluctuations in connectivity in response to both lower sea levels during glacial events and increased fragmentation during glacial recession. We test whether extended refugial isolation has led to the divergence of genetically and morphologically distinct species within Holarctic ermine (Mustela erminea), a small cosmopolitan carnivore species that harbours 34 extant subspecies, 14 of which are insular endemics.

Location

Holarctic.

Methods

We use genetic sequences (complete mitochondrial genomes, four nuclear genes) from >100 ermine (stoats) and geometric morphometric data for >200 individuals (27 of the 34 extant subspecies) from across their Holarctic range to provide an integrative perspective on diversification and endemism across this complex landscape. Multiple species delimitation methods (iBPP,bPTP) assessed congruence between morphometric and genetic data.

Results

Our results support the recognition of at least three species within theM. ermineacomplex, coincident with three of four genetic clades, tied to diversification in separate glacial refugia. We found substantial geographic variation within each species, with geometric morphometric results largely consistent with historical infraspecific taxonomy.

Main conclusions

Phylogeographic structure mirrors patterns of diversification in other Holarctic species, with a major Nearctic‐Palearctic split, but with greater intraspecific morphological diversity. Recognition of insular endemic speciesM. haidarumis consistent with a deep history of refugial persistence and highlights the urgency of mindful management of island populations along North America's North Pacific Coast. Significant environmental modification (e.g. industrial‐scale logging, mining) has been proposed for a number of these islands, which may elevate the risk of extinction of insular palaeoendemics.

 
more » « less
NSF-PAR ID:
10402710
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Diversity and Distributions
Volume:
27
Issue:
4
ISSN:
1366-9516
Format(s):
Medium: X Size: p. 747-762
Size(s):
p. 747-762
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Numerous glacial refugia have been hypothesized along North America's North Pacific Coast that may have increased divergence of refugial taxa, leading to elevated endemism and subsequently clustered hybrid zones following deglaciation. The locations and community composition of these ice‐free areas remains controversial, but whole‐genome sequences now enable detailed analysis of the demographic and evolutionary histories of refugial taxa. Here, we use genomic data to test spatial and temporal processes of diversification among martens with respect to the Coastal Refugium Hypothesis, to understand the role of climate cycling in shaping diversity across complex landscapes.

    Location

    North America and North Pacific Coast archipelagos.

    Taxon

    North American martens (Martes).

    Methods

    Short‐read whole‐genome resequencing data were generated for 11 martens: fourM. americana, fourM. caurina, two hybrids, and one outgroup (Martes zibellina). Sampling was representative of known genetic clades within New World martens, including sampling within insular and continental hybrid zones and along the North Pacific Coast (five island populations).ADMIXTURE, F‐statistics, andD‐statistics (ABBA‐BABA) were used to identify introgression and infer directionality. Heterozygosity densities, estimated via PSMC, were used to characterize historical demography at and below the species level to infer refugial and colonization processes.

    Results

    Forest‐associated Pacific martens (M. caurina) are divided into distinct insular and continental clades consistent with the Coastal Refugium Hypothesis. There was no evidence of introgression on islands that received historical translocations of American pine martens (M. americana), but introgression was detected in two active zones of secondary contact: one insular and one continental. Only early‐generational hybrids were identified across multiple hybrid zones, a pattern consistent with potential genetic swamping ofM. caurinabyM. americana.

    Main conclusions

    Despite an incomplete fossil record, genomic evidence supports the persistence of forest‐associated martens, likely the insular Pacific marten lineage, along the western edges of the Alexander Archipelago during the Last Glacial Maximum. This discovery informs our understanding of refugial paleoenvironments, critical to interpreting refugial timing, duration, and community composition. Genomic reevaluations of other taxa along North America's North Pacific Coast may yield new and deeper perspectives on the history of refugial forest communities and the role of dynamic climate shifts in shaping high‐latitude diversity across complex insular landscapes.

     
    more » « less
  2. Abstract Aim

    Understanding the drivers of speciation within islands is key to explain the high levels of invertebrate diversification and endemism often observed within islands. Here, we propose an insular topoclimate model for Quaternary diversification (ITQD), and test the general prediction that, within a radially eroded conical island, glacial climate conditions facilitate the divergence of populations within species across valleys.

    Location

    Gran Canaria, Canary Islands.

    Taxon

    TheLaparocerus tessellatusbeetle species complex (Coleoptera, Curculionidae).

    Methods

    We characterize individual‐level genomic relationships using single nucleotide polymorphisms produced by double‐digest restriction site associated DNA sequencing (ddRAD‐seq). A range of parameter values were explored in order to filter our data. We assess individual relatedness, species boundaries, demographic history and spatial patterns of connectivity.

    Results

    The total number of ddRAD‐seq loci per sample ranges from 4,576 to 512, with 11.12% and 4.84% of missing data respectively, depending on the filtering parameter combination. We consistently infer four genetically distinct ancestral populations and two presumed cases of admixture, one of which is largely restricted to high altitudes. Bayes factor delimitation support the hypothesis of four species, which is consistent with the four inferred ancestral gene pools. Landscape resistance analyses identified genomic relatedness among individuals in two out of the four inferred species to be best explained by annual precipitation during the last glacial maximum rather than geographic distance.

    Main conclusions

    Our data reveal a complex speciation history involving population isolation and admixture, with broad support for the ITQD model here proposed. We suggest that further studies are needed to test the generality of our model, and enrich our understanding of the evolutionary process in island invertebrates. Our results demonstrate the power of ddRAD‐seq data to provide a detailed understanding of the temporal and spatial dynamics of insular biodiversity.

     
    more » « less
  3. Abstract

    The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman,Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades ofS. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia.

     
    more » « less
  4. Abstract

    Quaternary climate change has been strongly linked to distributional shifts and recent species diversification. Montane species, in particular, have experienced enhanced isolation and rapid genetic divergence during glacial fluctuations, and these processes have resulted in a disproportionate number of neo‐endemic species forming in high‐elevation habitats. In temperate montane environments, a general model of alpine population history is well supported, where cold‐specialized species track favourable climate conditions downslope during glacial episodes and upslope during warmer interglacial periods, which leads to a climate‐driven population or species diversification pump. However, it remains unclear how geography mediates distributional changes and whether certain episodes of glacial history have differentially impacted rates of diversification. We address these questions by examining phylogenomic data in a North American clade of flightless, cold‐specialized insects, the ice crawlers (Insecta: Grylloblattodea: Grylloblattidae:Grylloblatta). These low‐vagility organisms have the potential to reveal highly localized refugia and patterns of spatial recolonization, as well as a longer history of in situ diversification. Using continuous phylogeographic analysis of species groups, we show that all species tend to retreat to nearby low‐elevation habitats across western North America during episodes of glaciation, but species at high latitude exhibit larger distributional shifts. Lineage diversification was examined over the course of the Neogene and Quaternary periods, with statistical analysis supporting a direct association between climate variation and diversification rate. Major increases in lineage diversification appear to be correlated with warm and dry periods, rather than with extreme glacial events. Finally, we identify substantial cryptic diversity among ice crawlers, leading to high endemism across their range. This diversity provides new insights into highly localized glacial refugia for cold‐specialized species across western North America.

     
    more » « less
  5. Abstract Aim

    We aim to test the biogeographic drivers of diversification and gene‐flow at the Isthmus of Panama using a species complex of suboscine birds as a case study. We specifically evaluate whether diversification in these birds is better explained by continuous parapatry or a Refuge Model of periodic isolation and gene‐flow due glacial cycling.

    Location

    The Isthmus of Panama (Neotropics).

    Taxon

    Pachyramphus aglaiaeandPachyramphus homochrous(Aves: Tityridae).

    Methods

    We develop an approach to distinguish among the two biogeographic hypotheses—parapatric ecological speciation versus climatically mediated speciation—by making explicit predictions for demographic history, niche evolution and change in geographic connectivity over time. We sequenced genome‐wide markers (ultraconserved elements) to estimate the evolutionary and demographic history of this group. We applied both phylogenomic network analyses and demographic modelling using a supervised machine learning approach. These genetic analyses were combined with a novel distribution modelling method that estimates the probability of interspecies contact as a function of climatic conditions through time.

    Results

    We found that both spatial and genetic analyses revealed concordant results. All speciation events occurred during the Pleistocene and were characterized by non‐continuous gene‐flow, supporting a scenario of climate‐mediated diversification. Spatial connectivity was highest at present, consistent with our best demographic model of secondary contact.

    Main conclusions

    This study exemplifies a mechanism by which speciation, dispersal and introgression unfold in an important region for Neotropical diversification—the Isthmus of Panama—where periods ofbothisolation and introgression probably drive diversification. Overall, our results are consistent with the Refuge Model of biotic diversification, but suggest that introgression may be a crucial yet underappreciated component of this classic paradigm.

     
    more » « less