Abstract QuestionsPredicting the influence of climate change on riparian plant communities improves management strategies. The sensitivity of riparian vegetation to climate and other abiotic factors depends on interactions between properties of the ecosystem, like flood regime, and plant characteristics. To explore these interactions, we addressed three questions: (a) does the composition and diversity of riparian vegetation vary with the flood regime; (b) do abiotic correlates of vegetation, including climate and groundwater, differ between sites that flood compared to locations that did not experience floods; and (c) which plant functional groups account for differential plant community sensitivity to abiotic factors between flood regimes? LocationMiddle Rio Grande Valley, New Mexico. MethodsWe used long‐term observations of plant community composition, groundwater depth, precipitation and interpolated temperature from 24 sites spanning 210 km of the Rio Grande riparian cottonwood–willow forest to explore the relative importance of climate and hydrologic correlates of riparian vegetation diversity and composition. ResultsRiparian plant diversity was higher at sites flooding compared to non‐flooding sites. Plant diversity positively tracked shallower groundwater depth at flooding sites, but was best predicted by intra‐annual groundwater variability at non‐flooding sites. Plant community composition correlated with groundwater depth and air temperature at all sites, but at non‐flooding sites, also with intra‐annual groundwater variability and precipitation. Relationships between native plant cover and potential environmental drivers diverged strongly between the two flood regimes; non‐native plant cover had only weak relationships with most environmental predictors. ConclusionsThe current flood regime of a site determined the climate and hydrologic factors that best predicted riparian plant community composition and diversity. Relationships between plant diversity or total cover and groundwater, temperature, precipitation, or groundwater variability can change in strength or direction depending on a site's flood history, highlighting the importance of flood regime to predicting the sensitivity of riparian woodlands to future environmental change.
more »
« less
Impacts of Climate Change Induced Sea Level Rise, Flow Increase and Vegetation Encroachment on Flood Hazard in the Biobío River, Chile
River flooding is one of the most widespread natural disasters. Projections indicate that climate change will increase flood hazard in many areas around the world. In this study, we investigate the individual and combined effects of sea level rise, flow increase and riparian vegetation encroachment on flood hazard in the lower Biobío River, Chile. Results show that each has the potential to individually increase flood hazard in certain areas, and that individual effects can compound. Encroachment of riparian vegetation onto previously sparsely vegetated areas of the floodplain, likely a result of the Chilean megadrought, causes higher flow resistance and increased flooding during large events. Somewhat counterintuitively, drought has therefore led to an increase in flood hazard in the study area. Drought risk for most land areas across the globe is expected to increase with climate change. Potential future vegetation encroachment should therefore be included as a key variable in riverine flood hazard studies.
more »
« less
- Award ID(s):
- 1954140
- PAR ID:
- 10402745
- Date Published:
- Journal Name:
- Water
- Volume:
- 14
- Issue:
- 24
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 4098
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Accurately delineating both pluvial and fluvial flood risk is critical to protecting vulnerable populations in urban environments. Although there are currently models and frameworks to estimate stormwater runoff and predict urban flooding, there are often minimal observations to validate results due to the quick retreat of floodwaters from affected areas. In this research, we compare and contrast different methodologies for capturing flood extent in order to highlight the challenges inherent in current methods for urban flooding delineation. This research focuses on two Philadelphia neighborhoods, Manayunk and Eastwick, that face frequent flooding. Overall, Philadelphia, PA is a city with a large proportion of vulnerable populations and is plagued by flooding, with expectations that flood risk will increase as climate change progresses. An array of data, including remotely sensed satellite imagery after major flooding events, Federal Emergency Management Agency’s Special Flood Hazard Areas, First Street Foundation’s Flood Factor, road closures, National Flood Insurance Program claims, and community surveys, were compared for the study areas. Here we show how stakeholder surveys can illuminate the weight of firsthand and communal knowledge on local understandings of stormwater and flood risk. These surveys highlighted different impacts of flooding, depending on the most persistent flood type, pluvial or fluvial, in each area, not present in large datasets. Given the complexity of flooding, there is no single method to fully encompass the impacts on both human well-being and the environment. Through the co-creation of flood risk knowledge, community members are empowered and play a critical role in fostering resilience in their neighborhoods. Community stormwater knowledge is a powerful tool that can be used as a complement to hydrologic flood delineation techniques to overcome common limitations in urban landscapes.more » « less
-
Urban flooding disrupts traffic networks, affecting mobility and disrupting residents’ access. Flooding events are predicted to increase due to climate change; therefore, understanding traffic network’s flood-caused disruption is critical to improving emergency planning and city resilience. This study reveals the anatomy of perturbed traffic networks by leveraging high-resolution traffic network data from a major flood event and advanced high-order network analysis. We evaluate travel times between every pairwise junction in the city and assess higher-order network geometry changes in the network to determine flood impacts. The findings show network-wide persistent increased travel times could last for weeks after the flood water has receded, even after modest flood failure. A modest flooding of 1.3% road segments caused 8% temporal expansion of the entire traffic network. The results also show that distant trips would experience a greater percentage increase in travel time. Also, the extent of the increase in travel time does not decay with distance from inundated areas, suggesting that the spatial reach of flood impacts extends beyond flooded areas. The findings of this study provide an important novel understanding of floods’ impacts on the functioning of traffic networks in terms of travel time and traffic network geometry.more » « less
-
Abstract Feedbacks between geomorphic processes and riparian vegetation in river systems are an important control on fluvial morphodynamics and on vegetation composition and distribution. Invasion by nonnative riparian species alters these feedbacks and drives management and restoration along many rivers, highlighting a need for ecogeomorphic models to assist with understanding feedbacks between plants and fluvial processes, and with restoration planning. In this study, we coupled a network‐scale sediment model (Sediment Routing and Floodplain Exchange; SeRFE) that simulates bank erosion and sediment transport in a spatially explicit manner with a recruitment potential analysis for a species of riparian vegetation (Arundo donax) that has invaded river systems and wetlands in Mediterranean climates worldwide. We used the resulting ecogeomorphic framework to understand both network‐scale sediment balances and the spread and recruitment ofA. donaxin the Santa Clara River watershed of Southern California. In the coupled model, we simulated a 1‐year time period during which a 5‐year recurrence interval flood occurred in the mainstem Santa Clara River. Outputs identify key areas acting as sources ofA. donaxrhizomes, which are subsequently transported by flood flows and deposited in reaches downstream. These results were validated in three study reaches, where we assessed postflood geomorphic and vegetation changes. The analysis demonstrates how a coupled model approach is able to highlight basin‐scale ecogeomorphic dynamics in a manner that is useful for restoration planning and prioritization and can be adapted to analogous ecogeomorphic questions in other watersheds.more » « less
-
Wisconsin’s Driftless Area, an unglaciated region defined by steep river valley systems, has been plagued by chronic flooding in part due to Euro-American agricultural practices and anthropogenic climate change. The region, which has played a central role in environmental knowledge production, has a storied history of resilience practices and flood experience. To capture histories of Driftless Area flood experience and underlying socio-ecological dynamics, we performed a qualitative analysis of regional news archives from 1866 to present on flood trends, experiences, and responses. Our analysis identified hazard response trends mediated by socio-ecological factors including crisis-induced windows of opportunity for change, conflicts over structural and non-structural responses to flooding, and psychological dimensions of environmental crises. Finally, our analysis noted the key role of community flood knowledge in producing shifts towards enhanced resilience, suggesting the need for empowering flood response planning at the community scale.more » « less
An official website of the United States government

