skip to main content


Title: Efficient Activation of 6‐Nitropiperonyloxymethylene (NPOM)‐Caged Nucleosides with Visible Light
Abstract

Caging groups are photoremovable protecting groups that render a molecule biologically inactive until light illumination, thereby allowing for temporal and spatial control of activity. While nitrobenzyl‐based caging groups have advantageous synthetic and photochemical properties, red shifting of the absorption spectrum through chemical modification has led to reduced decaging efficiency. 6‐Nitropiperonyloxymethylene (NPOM), a group with broad applicability in the caging of heterocyclic structures, in particular nucleic acids, traditionally requires ultraviolet (UV) irradiation for decaging. Herein, we investigated the decaging properties of NPOM under near visible light (400–450 nm) using N3‐caged 5’‐dimethoxytrityl (DMTr)‐thymidine as a substrate. To our surprise, we discovered highly efficient decaging at wavelengths outside the UV range, in particular when compared to other nitrobenzyl chromophores. These results have implications in the selection of light sources for photoactivation and for sequential photolysis to achieve selective control of biological processes.

 
more » « less
NSF-PAR ID:
10402828
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhotoChem
Volume:
7
Issue:
3
ISSN:
2367-0932
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Materials that can be switched between low and high thermal conductivity states would advance the control and conversion of thermal energy. Employing in situ time-domain thermoreflectance (TDTR) and in situ synchrotron X-ray scattering, we report a reversible, light-responsive azobenzene polymer that switches between high (0.35 W m−1K−1) and low thermal conductivity (0.10 W m−1K−1) states. This threefold change in the thermal conductivity is achieved by modulation of chain alignment resulted from the conformational transition between planar (trans) and nonplanar (cis) azobenzene groups under UV and green light illumination. This conformational transition leads to changes in the π-π stacking geometry and drives the crystal-to-liquid transition, which is fully reversible and occurs on a time scale of tens of seconds at room temperature. This result demonstrates an effective control of the thermophysical properties of polymers by modulating interchain π-π networks by light.

     
    more » « less
  2. Abstract

    Liposomes are highly effective nanocarriers for encapsulating and delivering a wide range of therapeutic cargo. While advancements in liposome design have improved several pharmacological characteristics, an important area that would benefit from further progress involves cellular targeting and entry. In this concept article, we will focus on recent progress utilizing strategies including reversible covalent bonding and caging groups to activate liposomal cell entry. These approaches take advantage of advancements that have been made in complementary fields including molecular sensing and chemical biology and direct this technology toward controlling liposome cell delivery properties. The decoration of liposomes with groups including boronic acids and cyclic disulfides is presented as a means for driving delivery through reaction with functional groups on cell surfaces. Additionally, caging groups can be exploited to activate cell delivery only upon encountering a target stimulus. These approaches provide promising new avenues for controlling cell delivery in the development of next‐generation liposomal therapeutic nanocarriers.

     
    more » « less
  3. Abstract

    Photodynamic hydrogel biomaterials have demonstrated great potential for user-triggered therapeutic release, patterned organoid development, and four-dimensional control over advanced cell fates in vitro. Current photosensitive materials are constrained by their reliance on high-energy ultraviolet light (<400 nm) that offers poor tissue penetrance and limits access to the broader visible spectrum. Here, we report a family of three photolabile material crosslinkers that respond rapidly and with unique tricolor wavelength-selectivity to low-energy visible light (400–617 nm). We show that when mixed with multifunctional poly(ethylene glycol) macromolecular precursors, ruthenium polypyridyl- andortho-nitrobenzyl (oNB)-based crosslinkers yield cytocompatible biomaterials that can undergo spatiotemporally patterned, uniform bulk softening, and multiplexed degradation several centimeters deep through complex tissue. We demonstrate that encapsulated living cells within these photoresponsive gels show high viability and can be successfully recovered from the hydrogels following photodegradation. Moving forward, we anticipate that these advanced material platforms will enable new studies in 3D mechanobiology, controlled drug delivery, and next-generation tissue engineering applications.

     
    more » « less
  4. ABSTRACT

    We report new ruthenium complexes bearing the lipophilic bathophenanthroline (BPhen) ligand and dihydroxybipyridine (dhbp) ligands which differ in the placement of the OH groups ([(BPhen)2Ru(n,n′‐dhbp)]Cl2withn = 6 and 4 in 1Aand 2A, respectively). Full characterization data are reported for 1Aand 2Aand single crystal X‐ray diffraction for 1A. Both 1Aand 2Aare diprotic acids. We have studied 1A, 1B, 2A, and 2B(B = deprotonated forms) by UV‐vis spectroscopy and 1 photodissociates, but 2 is light stable. Luminescence studies reveal that the basic forms have lower energy3MLCT states relative to the acidic forms. Complexes 1Aand 2Aproduce singlet oxygen with quantum yields of 0.05 and 0.68, respectively, in acetonitrile. Complexes 1 and 2 are both photocytotoxic toward breast cancer cells, with complex 2 showing EC50light values as low as 0.50 μM with PI values as high as >200vs. MCF7. Computational studies were used to predict the energies of the3MLCT and3MC states. An inaccessible3MC state for 2Bsuggests a rationale for why photodissociation does not occur with the 4,4′‐dhbp ligand. Low dark toxicity combined with an accessible3MLCT state for1O2generation explains the excellent photocytotoxicity of 2.

     
    more » « less
  5. Abstract

    An important component of life history theory is understanding how natural variation arises in populations. Both endogenous and exogenous factors contribute to organism survival and reproduction, and therefore, it is important to understand how such factors are both beneficial and detrimental to population dynamics. One ecologically relevant factor that influences the life history of aquatic organisms is ultraviolet (UV) radiation. While the majority of research has focused on the potentially detrimental effects that UV radiation has on aquatic organisms, few studies have evaluated hormetic responses stimulated by radiation under select conditions. The goal of this study was to evaluate the impact of UV‐A/B irradiation on life history characteristics inTigriopus californicuscopepods. After exposing copepods to UV‐A/B irradiation (control, 1‐, and 3‐hr UV treatments at 0.5 W/m2), we measured the impact of exposure on fecundity, reproductive effort, and longevity. We found that UV irradiation increased the size of the first clutch among all reproducing females in both the 1‐ and 3‐hr experimental groups and decreased longevity among all females that mated in the 1‐hr treatment. UV irradiation had no effect on the number of clutches females produced. These findings indicate a potential benefit of UV irradiation on reproductive performance early in life, although the same exposure came at a cost to longevity.

     
    more » « less