Attempts to use machine learning to develop atmospheric parameterizations have mainly focused on subgrid effects on temperature and moisture, but subgrid momentum transport is also important in simulations of the atmospheric circulation. Here, we use neural networks to develop a subgrid momentum transport parameterization that learns from coarse‐grained output of a high‐resolution atmospheric simulation in an idealized aquaplanet domain. We show that substantial subgrid momentum transport occurs due to convection. The neural‐network parameterization has skill in predicting momentum fluxes associated with convection, although its skill for subgrid momentum fluxes is lower compared to subgrid energy and moisture fluxes. The parameterization conserves momentum, and when implemented in the same atmospheric model at coarse resolution it leads to stable simulations and tends to reduce wind biases, although it over‐corrects for one configuration tested. Overall, our results show that it is challenging to predict subgrid momentum fluxes and that machine‐learning momentum parameterization gives promising results.
A promising approach to improve climate‐model simulations is to replace traditional subgrid parameterizations based on simplified physical models by machine learning algorithms that are data‐driven. However, neural networks (NNs) often lead to instabilities and climate drift when coupled to an atmospheric model. Here, we learn an NN parameterization from a high‐resolution atmospheric simulation in an idealized domain by accurately calculating subgrid terms through coarse graining. The NN parameterization has a structure that ensures physical constraints are respected, such as by predicting subgrid fluxes instead of tendencies. The NN parameterization leads to stable simulations that replicate the climate of the high‐resolution simulation with similar accuracy to a successful random‐forest parameterization while needing far less memory. We find that the simulations are stable for different horizontal resolutions and a variety of NN architectures, and that an NN with substantially reduced numerical precision could decrease computational costs without affecting the quality of simulations.
more » « less- Award ID(s):
- 1835618
- PAR ID:
- 10402848
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 6
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Coupled climate simulations that span several hundred years cannot be run at a high‐enough spatial resolution to resolve mesoscale ocean dynamics. Recently, several studies have considered Deep Learning to parameterize subgrid forcing within macroscale ocean equations using data from ocean‐only simulations with idealized geometry. We present a stochastic Deep Learning parameterization that is trained on data generated by CM2.6, a high‐resolution state‐of‐the‐art coupled climate model. We train a Convolutional Neural Network for the subgrid momentum forcing using macroscale surface velocities from a few selected subdomains with different dynamical regimes. At each location of the coarse grid, rather than predicting a single number for the subgrid momentum forcing, we predict both the mean and standard deviation of a Gaussian probability distribution. This approach requires training our neural network to minimize a negative log‐likelihood loss function rather than the Mean Square Error, which has been the standard in applications of Deep Learning to the problem of parameterizations. Each estimate of the conditional mean subgrid forcing is thus associated with an uncertainty estimate–the standard deviation—which will form the basis for a stochastic subgrid parameterization. Offline tests show that our parameterization generalizes well to the global oceans and a climate with increased
levels without further training. We then implement our learned stochastic parameterization in an eddy‐permitting idealized shallow water model. The implementation is stable and improves some statistics of the flow. Our work demonstrates the potential of combining Deep Learning tools with a probabilistic approach in parameterizing unresolved ocean dynamics. -
Abstract Subgrid processes in global climate models are represented by parameterizations which are a major source of uncertainties in simulations of climate. In recent years, it has been suggested that machine‐learning (ML) parameterizations based on high‐resolution model output data could be superior to traditional parameterizations. Currently, both traditional and ML parameterizations of subgrid processes in the atmosphere are based on a single‐column approach, which only use information from single atmospheric columns. However, single‐column parameterizations might not be ideal since certain atmospheric phenomena, such as organized convective systems, can cross multiple grid boxes and involve slantwise circulations that are not purely vertical. Here we train neural networks (NNs) using non‐local inputs spanning over 3 × 3 columns of inputs. We find that including the non‐local inputs improves the offline prediction of a range of subgrid processes. The improvement is especially notable for subgrid momentum transport and for atmospheric conditions associated with mid‐latitude fronts and convective instability. Using an interpretability method, we find that the NN improvements partly rely on using the horizontal wind divergence, and we further show that including the divergence or vertical velocity as a separate input substantially improves offline performance. However, non‐local winds continue to be useful inputs for parameterizating subgrid momentum transport even when the vertical velocity is included as an input. Overall, our results imply that the use of non‐local variables and the vertical velocity as inputs could improve the performance of ML parameterizations, and the use of these inputs should be tested in online simulations in future work.
-
Abstract Climate models are essential to understand and project climate change, yet long‐standing biases and uncertainties in their projections remain. This is largely associated with the representation of subgrid‐scale processes, particularly clouds and convection. Deep learning can learn these subgrid‐scale processes from computationally expensive storm‐resolving models while retaining many features at a fraction of computational cost. Yet, climate simulations with embedded neural network parameterizations are still challenging and highly depend on the deep learning solution. This is likely associated with spurious non‐physical correlations learned by the neural networks due to the complexity of the physical dynamical system. Here, we show that the combination of causality with deep learning helps removing spurious correlations and optimizing the neural network algorithm. To resolve this, we apply a causal discovery method to unveil causal drivers in the set of input predictors of atmospheric subgrid‐scale processes of a superparameterized climate model in which deep convection is explicitly resolved. The resulting causally‐informed neural networks are coupled to the climate model, hence, replacing the superparameterization and radiation scheme. We show that the climate simulations with causally‐informed neural network parameterizations retain many convection‐related properties and accurately generate the climate of the original high‐resolution climate model, while retaining similar generalization capabilities to unseen climates compared to the non‐causal approach. The combination of causal discovery and deep learning is a new and promising approach that leads to stable and more trustworthy climate simulations and paves the way toward more physically‐based causal deep learning approaches also in other scientific disciplines.
-
Abstract Air‐sea flux variability has contributions from both ocean and atmosphere at different spatio‐temporal scales. Atmospheric synoptic scales and the air‐sea turbulent heat flux that they drive are well represented in climate models, but ocean mesoscales and their associated variability are often not well resolved due to non‐eddy‐resolving spatial resolutions of current climate models. We deploy a physics‐based stochastic subgrid‐scale parameterization for ocean density, that reinforces the lateral density variations due to oceanic eddies, and examine its effect on air‐sea heat flux variability in a comprehensive coupled climate model. The stochastic parameterization substantially modifies sea surface temperature (SST) and latent heat flux (LHF) variability and their co‐variability, primarily at scales near the resolution of the ocean model grid. Enhancement in the SST‐LHF anomaly covariance, and correlations, indicate that the ocean‐intrinsic component of the air‐sea heat flux variability is more consistent with high‐resolution satellite observations, especially in Gulf Stream region.