skip to main content

Title: Insight into the photocatalytic properties of phosphonate‐based metal–organic frameworks for reduction of Cr (VI) and Synergistic elimination of organic dyes under natural sunlight

The photocatalytic reduction of Cr (VI) is investigated over phosphonate‐based metal–organic frameworks (MOFs) structured as STA‐12(M)(M = Mn, Fe, Co, Ni). The removal of Cr (VI) appears to be faster with STA‐12(Fe) under natural sunlight. The correlation among responses to effective variables as main and interactions were optimized by central composite design (CCD) in response surface methodology (RSM). Moreover, STA‐12(Fe) has exhibited considerable synergistic photocatalytic activity for dyes (MO and RhB) degradation and Cr (VI) reduction. The reduction ratio of Cr (VI) was increased extremely after addition of MO or RhB. The highest photocatalytic activity of dyes degradation and Cr (VI) reduction appeared under the dye/Cr (VI) weight ratio of 3:1. To determine the most important species that affected the photocatalytic reduction, trapping experiments were carried out, using various kinds of scavenger species. Finally, a probable reaction mechanism has been investigated in detail.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Applied Organometallic Chemistry
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Carbon dots (C-dots) were facilely fabricated via a hydrothermal method and fully characterized. Our study shows that the as-synthesized C-dots are nontoxic, negatively charged spherical particles (average diameter 4.7 nm) with excellent water dispersion ability. Furthermore, the C-dots have a rich presence of surface functionalities such as hydroxyls and carboxyls as well as amines. The significance of the C-dots as highly efficient photocatalysts for rhodamine B (RhB) and methylene blue (MB) degradation was explored. The C-dots demonstrate excellent photocatalytic activity, achieving 100% of RhB and MB degradation within 170 min. The degradation rate constants for RhB and MB were 1.8 × 10−2 and 2.4 × 10−2 min−1, respectively. The photocatalytic degradation performances of the C-dots are comparable to those metal-based photocatalysts and generally better than previously reported C-dots photocatalysts. Collectively considering the excellent photocatalytic activity toward organic dye degradation, as well as the fact that they are facilely synthesized with no need of further doping, compositing, and tedious purification and separation, the C-dots fabricated in this work are demonstrated to be a promising alternative for pollutant degradation and environment protection. 
    more » « less
  2. CuBiW 2 O 8 (CBTO), with a band gap of 1.9–2.0 eV, responds to a wide region of the electromagnetic spectrum, which makes it a good candidate for solar-driven photocatalytic energy conversion and water treatment. We have previously demonstrated a Cu-rich solid state approach that enables the synthesis of CBTO accompanied by thermodynamically stable Bi 2 WO 6 impurity. Here, we describe an improved synthesis protocol with decreased impurity and synthesis time, and the first demonstration of CBTO as a functional material using photocatalytic Cr( vi ) photoreduction as a probe reaction. Transient absorption spectroscopy (TAS) was performed to investigate the ultrafast dynamics of the charge carriers after photoexcitation. The presence of two populations of photoexcited carriers was found, including short-lived free carriers with ∼10 ps lifetime and long-lived shallowly-trapped carriers with ∼1 ns lifetime. Together with carrier mobilities measured in our previous study, the new TAS results indicate that the long-lived charges have diffusion lengths similar to the CBTO particle size and were likely responsible for the majority of the photocatalytic activity. High activity of CBTO for Cr( vi ) photoreduction (∼100% reduction of 5 mg L −1 of Cr( vi ) in 15 minutes) was demonstrated, which clearly establishes the promise of this novel oxide for visible light-driven photocatalytic applications. Radical quenching experiments indicate that both ˙OH radicals and O 2 ˙ − radicals are produced by CBTO and are involved in the photoreduction of Cr( vi ). Repeated photocatalysis tests and analysis of the surface after the reaction show that CBTO is a stable and potentially reusable catalyst. Insights gained from correlating the synthesis conditions, carrier dynamics, and reactive species suggests that CBTO prepared with the improved protocol would be a favorable choice for photocatalytic reactions such as water decontamination from organic pollutants, water splitting, and solar fuel generation using visible light. 
    more » « less
  3. Abstract

    The geochemical behavior of molybdenum (Mo) in the oceans is closely linked to the presence of sulfide species in anoxic environments, where Fe availability may play a key role in the Mo scavenging. Here, we show that Mo(VI) is reduced in the presence of particulate organic matter (represented by sulfate‐reducing bacteria). Molybdenum was immobilized at the surface of both living cells and dead/lysed cells, but not in cell‐free control experiments. Experiments were carried out at four different Mo concentrations (0.1 to 2 mm) to yield cell‐associated Mo precipitates with little or no Fe, consisting of mainly Mo(IV)‐sulfide compounds with molecular structures similar to Mo enzymes and to those found in natural euxinic sediments. Therefore, we propose that Mo removal in natural sulfidic waters can proceed via a non‐Fe‐assisted pathway that requires particulate organic matter (dead or living sulfate‐reducing bacteria). This pathway has implications for global marine Mo cycling and the current use of Mo‐based proxies for paleo‐environmental investigations.

    more » « less
  4. Although heterogeneous photocatalysis has shown promising results in degradation of contaminants of emerging concern (CECs), the mechanistic implications related to structural diversity of chemicals, affecting oxidative (by HO•) or reductive (by O2•−) degradation pathways are still scarce. In this study, the degradation extents and rates of selected organics in the absence and presence of common scavengers for reactive oxygen species (ROS) generated during photocatalytic treatment were determined. The obtained values were then brought into correlation as K coefficients (MHO•/MO2•−), denoting the ratio of organics degraded by two occurring mechanisms: oxidation and reduction via HO• and O2•−. The compounds possessing K >> 1 favor oxidative degradation over HO•, and vice versa for reductive degradation (i.e., if K << 1 compounds undergo reductive reactions driven by O2•−). Such empirical values were brought into correlation with structural features of CECs, represented by molecular descriptors, employing a quantitative structure activity/property relationship (QSA/PR) modeling. The functional stability and predictive power of the resulting QSA/PR model was confirmed by internal and external cross-validation. The most influential descriptors were found to be the size of the molecule and presence/absence of particular molecular fragments such as C − O and C − Cl bonds; the latter favors HO•-driven reaction, while the former the reductive pathway. The developed QSA/PR models can be considered robust predictive tools for evaluating distribution between degradation mechanisms occurring in photocatalytic treatment.

    more » « less
  5. The photochemistry of a plasmonic biomaterial that consisted of gold nanoparticles (AuNP) on the exterior of the iron sequestration protein, ferritin (Ftn), was investigated. The light driven photochemistry of the hybrid system was studied mechanistically and for the reduction of the high priority pollutant, chromate, Cr( vi ) as CrO 4 2− . In the absence of aqueous Cr( vi ), but in the presence of a sacrificial electron donor, the Fe( iii ) oxyhydroxide semiconducting core of Ftn underwent a photoreaction to release Fe( ii ) when exposed to light having wavelengths, λ < 475 nm. AuNP grown on the exterior of the Ftn produced plasmonic heterostructures (Au/Ftn) that allowed similar photochemistry to occur at longer wavelengths of light ( i.e. , λ > 475 nm). Au/Ftn also facilitated the reduction of Cr( vi ) to Cr( iii ) in the presence of visible light ( λ > 475 nm), a reaction that was not observed if AuNP were not attached to the Ftn cage. Results also indicated that AuNP need to be intimately bound to Ftn to extend the photochemistry of Au/Ftn to longer light wavelengths, relative to Au-free Ftn. 
    more » « less