skip to main content


Title: Illustrating galaxy–halo connection in the DESI era with illustrisTNG
ABSTRACT

We employ the hydrodynamical simulation illustrisTNG to inform the galaxy–halo connection of the Luminous Red Galaxy (LRG) and Emission Line Galaxy (ELG) samples of the Dark Energy Spectroscopic Instrument (DESI) survey at redshift z ∼ 0.8. Specifically, we model the galaxy colours of illustrisTNG and apply sliding DESI colour–magnitude cuts, matching the DESI target densities. We study the halo occupation distribution (HOD) model of the selected samples by matching them to their corresponding dark matter haloes in the illustrisTNG dark matter run. We find the HOD of both the LRG and ELG samples to be consistent with their respective baseline models, but also we find important deviations from common assumptions about the satellite distribution, velocity bias, and galaxy secondary biases. We identify strong evidence for concentration-based and environment-based occupational variance in both samples, an effect known as ‘galaxy assembly bias’. The central and satellite galaxies have distinct dependencies on secondary halo properties, showing that centrals and satellites have distinct evolutionary trajectories and should be modelled separately. These results serve to inform the necessary complexities in modelling galaxy–halo connection for DESI analyses and also prepare for building high-fidelity mock galaxies. Finally, we present a shuffling-based clustering analysis that reveals a 10–15 ${{\ \rm per\ cent}}$ excess in the LRG clustering of modest statistical significance due to secondary galaxy biases. We also find a similar excess signature for the ELGs, but with much lower statistical significance. When a larger hydrodynamical simulation volume becomes available, we expect our analysis pipeline to pinpoint the exact sources of such excess clustering signatures.

 
more » « less
NSF-PAR ID:
10402887
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5793-5811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the first comprehensive halo occupation distribution (HOD) analysis of the Dark Energy Spectroscopic Instrument (DESI) One-Percent Survey luminous red galaxy (LRG) and Quasi Stellar Object (QSO) samples. We constrain the HOD of each sample and test possible HOD extensions by fitting the redshift-space galaxy 2-point correlation functions in 0.15 < r < 32 h−1 Mpc in a set of fiducial redshift bins. We use AbacusSummit cubic boxes at Planck 2018 cosmology as model templates and forward model galaxy clustering with the AbacusHOD package. We achieve good fits with a standard HOD model with velocity bias, and we find no evidence for galaxy assembly bias or satellite profile modulation at the current level of statistical uncertainty. For LRGs in 0.4 < z < 0.6, we infer a satellite fraction of $f_\mathrm{sat} = 11\pm 1~{y{\ \mathrm{per\,cent}}}$, a mean halo mass of $\log _{10}\overline{M}_h/M_\odot =13.40^{+0.02}_{-0.02}$, and a linear bias of $b_\mathrm{lin} = 1.93_{-0.04}^{+0.06}$. For LRGs in 0.6 < z < 0.8, we find $f_\mathrm{sat}=14\pm 1~{{\ \mathrm{per\,cent}}}$, $\log _{10}\overline{M}_h/M_\odot =13.24^{+0.02}_{-0.02}$, and $b_\mathrm{lin}=2.08_{-0.03}^{+0.03}$. For QSOs, we infer $f_\mathrm{sat}=3^{+8}_{-2}\mathrm{per\,cent}$, $\log _{10}\overline{M}_h/M_\odot = 12.65^{+0.09}_{-0.04}$, and $b_\mathrm{lin} = 2.63_{-0.26}^{+0.37}$ in redshift range 0.8 < z < 2.1. Using these fits, we generate a large suite of high fidelity galaxy mocks, forming the basis of systematic tests for DESI Y1 cosmological analyses. We also study the redshift-evolution of the DESI LRG sample from z = 0.4 up to z = 1.1, revealling significant and interesting trends in mean halo mass, linear bias, and satellite fraction.

     
    more » « less
  2. ABSTRACT

    Luminous red galaxies (LRGs) and blue star-forming emission-line galaxies (ELGs) are key tracers of large-scale structure used by cosmological surveys. Theoretical predictions for such data are often done via simplistic models for the galaxy–halo connection. In this work, we use the large, high-fidelity hydrodynamical simulation of the MillenniumTNG project (MTNG) to inform a new phenomenological approach for obtaining an accurate and flexible galaxy-halo model on small scales. Our aim is to study LRGs and ELGs at two distinct epochs, z = 1 and z = 0, and recover their clustering down to very small scales, $r \sim 0.1 \ h^{-1}\, {\rm Mpc}$, i.e. the one-halo regime, while a companion paper extends this to a two-halo model for larger distances. The occupation statistics of ELGs in MTNG inform us that (1) the satellite occupations exhibit a slightly super-Poisson distribution, contrary to commonly made assumptions, and (2) that haloes containing at least one ELG satellite are twice as likely to host a central ELG. We propose simple recipes for modelling these effects, each of which calls for the addition of a single free parameter to simpler halo occupation models. To construct a reliable satellite population model, we explore the LRG and ELG satellite radial and velocity distributions and compare them with those of subhaloes and particles in the simulation. We find that ELGs are anisotropically distributed within haloes, which together with our occupation results provides strong evidence for cooperative galaxy formation (manifesting itself as one-halo galaxy conformity); i.e. galaxies with similar properties form in close proximity to each other. Our refined galaxy-halo model represents a useful improvement of commonly used analysis tools and thus can be of help to increase the constraining power of large-scale structure surveys.

     
    more » « less
  3. ABSTRACT

    We present a novel simulation-based hybrid emulator approach that maximally derives cosmological and Halo Occupation Distribution (HOD) information from non-linear galaxy clustering, with sufficient precision for DESI Year 1 (Y1) analysis. Our hybrid approach first samples the HOD space on a fixed cosmological simulation grid to constrain the high-likelihood region of cosmology + HOD parameter space, and then constructs the emulator within this constrained region. This approach significantly reduces the parameter volume emulated over, thus achieving much smaller emulator errors with fixed number of training points. We demonstrate that this combined with state-of-the-art simulations result in tight emulator errors comparable to expected DESI Y1 LRG sample variance. We leverage the new abacussummit simulations and apply our hybrid approach to CMASS non-linear galaxy clustering data. We infer constraints on σ8 = 0.762 ± 0.024 and fσ8(zeff = 0.52) = 0.444 ± 0.016, the tightest among contemporary galaxy clustering studies. We also demonstrate that our fσ8 constraint is robust against secondary biases and other HOD model choices, a critical first step towards showcasing the robust cosmology information accessible in non-linear scales. We speculate that the additional statistical power of DESI Y1 should tighten the growth rate constraints by at least another 50–60 ${{\ \rm per\ cent}}$, significantly elucidating any potential tension with Planck. We also address the ‘lensing is low’ tension, which we find to be in the same direction as a potential tension in fσ8. We show that the combined effect of a lower fσ8 and environment-based bias accounts for approximately $50{{\ \rm per\ cent}}$ of the discrepancy.

     
    more » « less
  4. ABSTRACT

    We test different implementations of the halo occupation distribution (HOD) model to reconstruct the spatial distribution of galaxies as predicted by a version of the L-GALAXIES semi-analytical model (SAM). We compare the measured two-point correlation functions of the HOD mock catalogues and the SAM samples to quantify the fidelity of the reconstruction. We use fixed number density galaxy samples selected according to stellar mass or star formation rate (SFR). We develop three different schemes to populate haloes with galaxies with increasing complexity, considering the scatter of the satellite HOD as an additional parameter in the modelling. We modify the SAM output, removing assembly bias and using a standard Navarro–Frenk–White density profile for the satellite galaxies as the target to reproduce with our HOD mocks. We find that all models give similar reproductions of the two-halo contribution to the clustering signal, but there are differences in the one-halo term. In particular, the HOD mock reproductions work equally well using either the HOD of central and satellites separately or using a model that also accounts for whether or not the haloes contain a central galaxy. We find that the HOD scatter does not have an important impact on the clustering predictions for stellar mass-selected samples. For SFR selections, we obtain the most accurate results assuming a negative binomial distribution for the number of satellites in a halo. The scatter in the satellites HOD is a key consideration for HOD mock catalogues that mimic ELG or SFR-selected samples in future galaxy surveys.

     
    more » « less
  5. Abstract

    We explore the galaxy-halo connection information that is available in low-redshift samples from the early data release of the Dark Energy Spectroscopic Instrument (DESI). We model the halo occupation distribution (HOD) fromz= 0.1 to 0.3 using Survey Validation 3 (SV3; a.k.a., the One-Percent Survey) data of the DESI Bright Galaxy Survey. In addition to more commonly used metrics, we incorporate counts-in-cylinders (CiC) measurements, which drastically tighten HOD constraints. Our analysis is aided by the Python package,galtab, which enables the rapid, precise prediction of CiC for any HOD model available inhalotools. This methodology allows our Markov chains to converge with much fewer trial points, and enables even more drastic speedups due to its GPU portability. Our HOD fits constrain characteristic halo masses tightly and provide statistical evidence for assembly bias, especially at lower luminosity thresholds: the HOD of central galaxies inz∼ 0.15 samples with limiting absolute magnitudeMr< −20.0 andMr< −20.5 samples is positively correlated with halo concentration with a significance of 99.9% and 99.5%, respectively. Our models also favor positive central assembly bias for the brighterMr< −21.0 sample atz∼ 0.25 (94.8% significance), but there is no significant evidence for assembly bias with the same luminosity threshold atz∼ 0.15. We provide our constraints for each threshold sample’s characteristic halo masses, assembly bias, and other HOD parameters. These constraints are expected to be significantly tightened with future DESI data, which will span an area 100 times larger than that of SV3.

     
    more » « less