Abstract In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.
more »
« less
Effect of the high-level trigger for detecting long-lived particles at LHCb
Long-lived particles (LLPs) show up in many extensions of the Standard Model, but they are challenging to search for with current detectors, due to their very displaced vertices. This study evaluated the ability of the trigger algorithms used in the Large Hadron Collider beauty (LHCb) experiment to detect long-lived particles and attempted to adapt them to enhance the sensitivity of this experiment to undiscovered long-lived particles. A model with a Higgs portal to a dark sector is tested, and the sensitivity reach is discussed. In the LHCb tracking system, the farthest tracking station from the collision point is the scintillating fiber tracker, the SciFi detector. One of the challenges in the track reconstruction is to deal with the large amount of and combinatorics of hits in the LHCb detector. A dedicated algorithm has been developed to cope with the large data output. When fully implemented, this algorithm would greatly increase the available statistics for any long-lived particle search in the forward region and would additionally improve the sensitivity of analyses dealing with Standard Model particles of large lifetime, such as K S 0 or Λ 0 hadrons.
more »
« less
- Award ID(s):
- 1904160
- PAR ID:
- 10402924
- Date Published:
- Journal Name:
- Frontiers in Big Data
- Volume:
- 5
- ISSN:
- 2624-909X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.more » « less
-
Abstract Charged-particle trajectories are usually reconstructed with the LHCb detector using combined information from the tracking devices placed upstream and downstream of the 4 T m dipole magnet. Trajectories reconstructed using only information from the tracker downstream of the dipole magnet, which are referred to as T tracks, have not been used for physics analysis to date. The challenges of the reconstruction of long-lived particles with T tracks for physics use are discussed and solutions are proposed. The feasibility and the tracking performance are studied using samples of long-lived$${\Lambda }$$ and$$K_S^0$$ hadrons decaying between 6.0 and 7.6 m downstream of the proton–proton collision point, thereby traversing most of the magnetic field region and providing maximal sensitivity to magnetic and electric dipole moments. The reconstruction can be expanded upstream to about 2.5 m for use in direct searches of exotic long-lived particles. The data used in this analysis have been recorded between 2015 and 2018 and correspond to an integrated luminosity of 6 $$\hbox {fb}^{-1}$$ . The results obtained demonstrate the possibility to further extend the decay volume and the physics reach of the LHCb experiment.more » « less
-
A<sc>bstract</sc> A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb−1ofppcollision data collected at$$ \sqrt{s} $$ = 13 TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a smallR-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of$$ m\left(\overset{\sim }{g}\right) $$ = 2.4 TeV gluinos, electroweakinos with$$ m\left({\overset{\sim }{\chi}}_1^0\right) $$ = 1.5 TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.more » « less
-
A search for the production of long-lived particles in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC is presented. The search is based on data collected by the CMS experiment in 2016–2018, corresponding to a total integrated luminosity of . This search is designed to be sensitive to long-lived particles with mean proper decay lengths between 0.1 and 1000 mm, whose decay products produce a final state with at least one displaced vertex and missing transverse momentum. A machine learning algorithm, which improves the background rejection power by more than an order of magnitude, is applied to improve the sensitivity. The observation is consistent with the standard model background prediction, and the results are used to constrain split supersymmetry (SUSY) and gauge-mediated SUSY breaking models with different gluino mean proper decay lengths and masses. This search is the first CMS search that shows sensitivity to hadronically decaying long-lived particles from signals with mass differences between the gluino and neutralino below 100 GeV. It sets the most stringent limits to date for split-SUSY models and gauge-mediated SUSY breaking models with gluino proper decay length less than 6 mm. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
An official website of the United States government

