skip to main content


Title: Model Output From "A Model Intercomparison Of Ccn-Limited Tenuous Clouds In The High Arctic"

Model output from "A model intercomparison of CCN-limited tenuous clouds in the high Arctic", accepted for publication in Atmospheric Chemistry and Physics, 2018, same authors. The intercomparison includes output from three large-eddy simulation models (UCLALES-SALSA, MIMICA, and COSMO-LES) and three numerical weather prediction models (COSMO-NWP, WRF, and UM-CASIM) for a case study of high-Arctic tenuous cloud based on observations from the 2008 Arctic Summer Cloud Ocean Study (ASCOS) campaign. See publication for details. The discussion preprint for peer review can be found at https://doi.org/10.5194/acp-2017-1128.

 
more » « less
Award ID(s):
0707551
NSF-PAR ID:
10403006
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Zenodo
Date Published:
Subject(s) / Keyword(s):
["cloud","aerosol","Arctic","large eddy simulation","numerical weather prediction"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change has adverse impacts on Arctic natural ecosystems and threatens northern communities by disrupting subsistence practices, limiting accessibility, and putting built infrastructure at risk. In this paper, we analyze spatial patterns of permafrost degradation and associated risks to built infrastructure due to loss of bearing capacity and thaw subsidence in permafrost regions of the Arctic. Using a subset of three Coupled Model Intercomparison Project 6 models under SSP245 and 585 scenarios we estimated changes in permafrost bearing capacity and ground subsidence between two reference decades: 2015–2024 and 2055–2064. Using publicly available infrastructure databases we identified roads, railways, airport runways, and buildings at risk of permafrost degradation and estimated country-specific costs associated with damage to infrastructure. The results show that under the SSP245 scenario 29% of roads, 23% of railroads, and 11% of buildings will be affected by permafrost degradation, costing $182 billion to the Arctic states by mid-century. Under the SSP585 scenario, 44% of roads, 34% of railroads, and 17% of buildings will be affected with estimated cost of $276 billion, with airport runways adding an additional $0.5 billion. Russia is expected to have the highest burden of costs, ranging from $115 to $169 billion depending on the scenario. Limiting global greenhouse gas emissions has the potential to significantly decrease the costs of projected damages in Arctic countries, especially in Russia. The approach presented in this study underscores the substantial impacts of climate change on infrastructure and can assist to develop adaptation and mitigation strategies in Arctic states. 
    more » « less
  2. Abstract

    The teleconnection between the Quasi‐Biennial Oscillation (QBO) and the Arctic polar vortex is investigated using Coupled Model Intercomparison Project 6 (CMIP6) models. Output from 14 CMIP6 models is compared with reanalysis, three experiments with prescribed QBOs, one of which has no free polar stratospheric variability, and transient experiments in which a QBO is prescribed in runs previously devoid of a QBO. Each CMIP6 model underestimates the Holton‐Tan effect (HTE), the weakening of the polar vortex expected with QBO easterlies in the tropical lower stratosphere. To establish why, potential vorticity maps are used to investigate longitudinal variations in the teleconnection. Prescribing easterly QBO in the transient experiments promotes more high‐latitude planetary wave breaking by influencing the mid‐latitude stratospheric circulation, particularly over Asia. CMIP6 models that better simulate this response over Asia better simulate the HTE. These models also have stronger 10 hPa QBO westerlies.

     
    more » « less
  3. Abstract. Comparing the output of general circulation models to observations is essential for assessing and improving the quality of models. While numerical weather prediction models are routinely assessed against a large array of observations, comparing climate models and observations usually requires long time series to build robust statistics. Here, we show that by nudging the large-scale atmospheric circulation in coupled climate models, model output can be compared to local observations for individual days. We illustrate this for three climate models during a period in April 2020 when a warm air intrusion reached the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition in the central Arctic. Radiosondes, cloud remote sensing and surface flux observations from the MOSAiC expedition serve as reference observations. The climate models AWI-CM1/ECHAM and AWI-CM3/IFS miss the diurnal cycle of surface temperature in spring, likely because both models assume the snowpack on ice to have a uniform temperature. CAM6, a model that uses three layers to represent snow temperature, represents the diurnal cycle more realistically. During a cold and dry period with pervasive thin mixed-phase clouds, AWI-CM1/ECHAM only produces partial cloud cover and overestimates downwelling shortwave radiation at the surface. AWI-CM3/IFS produces a closed cloud cover but misses cloud liquid water. Our results show that nudging the large-scale circulation to the observed state allows a meaningful comparison of climate model output even to short-term observational campaigns. We suggest that nudging can simplify and accelerate the pathway from observations to climate model improvements and substantially extends the range of observations suitable for model evaluation. 
    more » « less
  4. Abstract

    During the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, the Balloon-bornE moduLar Utility for profilinG the lower Atmosphere (BELUGA) was deployed from an ice floe drifting in theFram Straitfrom 29 June to 27 July 2020. The BELUGA observations aimed to characterize the cloudy Arctic atmospheric boundary layer above the sea ice using a modular setup of five instrument packages. Thein situmeasurements included atmospheric thermodynamic and dynamic state parameters (air temperature, humidity, pressure, and three-dimensional wind), broadband solar and terrestrial irradiance, aerosol particle microphysical properties, and cloud particle images. In total, 66 profile observations were collected during 33 balloon flights from the surface to maximum altitudes of 0.3 to 1.5 km. The profiles feature a high vertical resolution of 0.01 m to 1 m, including measurements below, inside, and above frequently occurring low-level clouds. This publication describes the balloon operations, instruments, and the obtained data set. We invite the scientific community for joint analysis and model application of the freely available data on PANGAEA.

     
    more » « less
  5. Abstract The Southern Ocean is covered by a large amount of clouds with high cloud albedo. However, as reported by previous climate model intercomparison projects, underestimated cloudiness and overestimated absorption of solar radiation (ASR) over the Southern Ocean lead to substantial biases in climate sensitivity. The present study revisits this long-standing issue and explores the uncertainty sources in the latest CMIP6 models. We employ 10-year satellite observations to evaluate cloud radiative effect (CRE) and cloud physical properties in five CMIP6 models that provide comprehensive output of cloud, radiation, and aerosol. The simulated longwave, shortwave, and net CRE at the top of atmosphere in CMIP6 are comparable with the CERES satellite observations. Total cloud fraction (CF) is also reasonably simulated in CMIP6, but the comparison of liquid cloud fraction (LCF) reveals marked biases in spatial pattern and seasonal variations. The discrepancies between the CMIP6 models and the MODIS satellite observations become even larger in other cloud macro- and micro-physical properties, including liquid water path (LWP), cloud optical depth (COD), and cloud effective radius, as well as aerosol optical depth (AOD). However, the large underestimation of both LWP and cloud effective radius (regional means ∼20% and 11%, respectively) results in relatively smaller bias in COD, and the impacts of the biases in COD and LCF also cancel out with each other, leaving CRE and ASR reasonably predicted in CMIP6. An error estimation framework is employed, and the different signs of the sensitivity errors and biases from CF and LWP corroborate the notions that there are compensating errors in the modeled shortwave CRE. Further correlation analyses of the geospatial patterns reveal that CF is the most relevant factor in determining CRE in observations, while the modeled CRE is too sensitive to LWP and COD. The relationships between cloud effective radius, LWP, and COD are also analyzed to explore the possible uncertainty sources in different models. Our study calls for more rigorous calibration of detailed cloud physical properties for future climate model development and climate projection. 
    more » « less