We report the electrospinning of mechanically-tunable, cellulose nanocrystal (CNC)-reinforced polyurethanes (PUs). Using high-aspect ratio CNCs from tunicates, the stiffness and strength of electrospun PU/CNC mats are shown to generally increase. Furthermore, by tuning the electrospinning conditions, fibrous PU/CNC mats were created with either aligned or non-aligned fibers, as confirmed by scanning electron microscopy. PU/CNC mats having fibers aligned in the strain direction were stiffer and stronger compared to mats containing non-aligned fibers. Interestingly, fiber alignment was accompanied by an anisotropic orientation of the CNCs, as confirmed by wide-angle X-ray scattering, implying their alignment additionally benefits both stiffness and strength of fibrous PU/CNC nanocomposite mats. These findings suggest that CNC alignment could serve as an additional reinforcement mechanism in the design of stronger fibrous nanocomposite mats.
more »
« less
Rendering Polyurethane Hydrophilic for Efficient Cellulose Reinforcement in Melt‐Spun Nanocomposite Fibers
Abstract Many commodity plastics, such as thermoplastic polyurethanes (PUs), require reinforcement for use as commercial products. Cellulose nanocrystals (CNCs) offer a “green” and scalable approach to polymer reinforcement as they are exceptionally stiff, recyclable, and abundant. Unfortunately, achieving efficient CNC reinforcement of PUs with industrial melt processing techniques is difficult, mostly due to the incompatibility of the hydrophobic PU with hydrophilic CNCs, limiting their dispersion. Here, a hydrophilic PU is synthesized to achieve strong reinforcement in melt‐processed nanocomposite fibers using filter paper‐sourced CNCs. The melt‐spun fibers, exhibiting smooth surfaces even at high CNC loading (up to 25 wt%) indicating good CNC dispersion, are bench‐marked against solvent‐cast films—solvent processing is not scalable but disperses CNCs well and produces strong CNC reinforcement. Mechanical analysis shows the CNC addition stiffens both nanocomposite films and fibers. The stress and strain at break, however, are not significantly affected in films, whereas adding CNCs to fibers increases the stress‐at‐break while reducing the strain‐at‐break. Compared to earlier studies employing a hydrophobic (and stiffer) PU, CNC addition to a hydrophilic PU substantially increases the fiber stiffness and strength. This work therefore suggests that rendering thermoplastics more hydrophilic might pave the way for “greener” polymer composite products using CNCs.
more »
« less
- Award ID(s):
- 1844463
- PAR ID:
- 10403038
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 10
- Issue:
- 9
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The fabrication of nanocomposite films and fibers based on cellulose nanocrystals (P-tCNCs) and a thermoplastic polyurethane (PU) elastomer is reported. High-aspect-ratio P-tCNCs were isolated from tunicates using phosphoric acid hydrolysis, which is a process that affords nanocrystals displaying high thermal stability. Nanocomposites were produced by solvent casting (films) or melt-mixing in a twin-screw extruder and subsequent melt-spinning (fibers). The processing protocols were found to affect the orientation of both PU hard segments and the P-tCNCs within the PU matrix and therefore the mechanical properties. While the films were isotropic, both the polymer matrix and the P-tCNCs proved to be aligned along the fiber direction in the fibers, as shown using SAXS/WAXS, angle-dependent Raman spectroscopy, and birefringence analysis. Tensile tests reveal that fibers and films, at similar P-tCNC contents, display Young’s moduli and strain-at-break that are within the same order of magnitude, but the stress-at-break was found to be ten-times higher for fibers, conferring them a superior toughness over films.more » « less
-
Stable poly(styrene-co-2-ethylhexyl acrylate) latex particles with diameter less than 600 nm were prepared by the miniemulsion polymerization of Pickering emulsions stabilized with hexyl-functionalized cellulose nanocrystals (CNC-hexyl-COOHs). Polymer nanocomposites were fabricated by casting of the CNC-stabilized latex particles, and the thermomechanical properties and microstructures of the films were studied and related to the type and amount of stabilizer as well as the processing conditions. Compared to the latex films stabilized with low-molecular-weight sodium dodecyl sulfate (SDS) surfactant, or using a combination of SDS and carboxylic acid CNC-COOHs, films stabilized solely with the alkyl-functionalized CNC-hexyl-COOHs showed much higher storage moduli in the rubbery regime and lower water uptake. Scanning electron microscopy (SEM) revealed a CNC network structure that is formed by excluded volume effects of the latex particles, which concentrates the CNC-hexyl-COOHs into the interstitial space during solvent evaporation. This effect results in the formation of a percolation network at a lower CNC concentration within the latex composite films. The network can be further reinforced by increasing the concentration of CNCs through an “ex situ” process where CNC-hexyl-COOH-stabilized latex particles were mixed with CNC-COOH aqueous dispersions before film casting. The ability to replace low-molecular-weight surfactants in water-based latexes with alkyl-functionalized CNCs that are not only biosourced but also act as reinforcing agents offers an opportunity to expand the property profile of a variety of commercial products such as paints, coatings, and adhesives.more » « less
-
ABSTRACT Sustainable alternatives to petroleum‐based plastics are needed urgently, but biodegradable materials from renewable sources often suffer from inadequate mechanical properties. Here, we demonstrate a bio‐inspired strategy to enhance soy protein isolate (SPI) nanocomposites through surface modification of cellulose nanocrystal (CNC) reinforcing filler particles with a polydopamine (polyDOPA) coating via dopamine polymerization under alkaline conditions. This modification creates multifunctional interfaces at filler surfaces that enhance nanocomposite mechanical properties likely by simultaneously altering filler dispersion and filler–matrix interactions. PolyDOPA‐modified CNCs increase the tensile strength and elastic modulus of SPI films (plasticized with 50% glycerol) by more than threefold compared to unreinforced controls. Transmission electron microscopy, spectroscopic techniques, and thermal analysis reveal that polyDOPA coatings influenced nanocomposite structure across multiple length scales, tripling the effective diameter of the CNC inclusions, reducing the tendency of CNC nanocrystals to aggregate, and increasing the glass transition temperature. The increase in glass transition temperature suggests reduced SPI molecular mobility, which, along with micromechanical modeling, indicates the potential for improved interfacial interactions. Results reveal how polyDOPA‐modified CNCs influence the interphase behavior and filler dispersion of SPI‐glycerol nanocomposites, providing a pathway to further improve their performance for various applications, including packaging, membranes, and coatings.more » « less
-
Photo-induced thiol-ene crosslinking of allyl-functionalized cellulose nanocrystal (CNC)/polymer nanocomposites allows access to films that mimic the water-enhanced mechanical gradient characteristics of the squid beak. These films are prepared by mixing the functionalized CNCs and polymer in a solvent before solution casting and drying. The photocrosslinking agents are then imbibed into the film before UV exposure. Reported herein are studies aimed at better understanding the effect of the film preparation procedure, film thickness and the conditions under which the UV treatment is carried out. It was found that when the film is heated at a temperature higher than its glass transition temperature (Tg) during the UV irradiation step there is a greater enhancement in the mechanical properties of the films, presumably on account of more efficient crosslinking between the CNC fillers. Moreover, composite films that were compression molded (at 90°C) before the imbibing step displayed lower mechanical properties compared to the as-cast films, which is attributed to phase separation of the CNC fillers and polymer matrix during this additional processing step. Finally, the film thickness was also found to be a critical factor that affects the degree of crosslinking. For example, thinner films (50 µm) displayed a higher wet modulus ca. 130 MPa compared to ca. 80 MPa for the thicker films (150 µm). Understanding the processing conditions allows access to a larger range of mechanical properties which is important for the design of new bio-inspired mechanical gradient nanocomposites.more » « less
An official website of the United States government
