skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Crystallographic texture formation in Fe-9wt%Si alloy during deformation and phase transition at high pressure
SUMMARY The seismic anisotropy of the Earth's solid inner core has been the topic of much research. It could be explained by the crystallographic preferred orientation (CPO) developing during convection. The likely phase is hexagonal close-packed iron (hcp), alloyed with nickel and some lighter elements. Here we use high energy synchrotron X-rays to study CPO in Fe-9wt%Si, uniaxially compressed in a diamond anvil cell in radial geometry. The experiments reveal that strong preferred orientation forms in the low-pressure body-centred cubic (bcc) phase that appears to be softer than pure iron. CPO is attributed to dominant {110}<111> slip. The onset of the bcc→hcp transition occurs at a pressure of ≈15 GPa, and the alloy remains in a two phase bcc + hcp state up to 40 GPa. The hcp phase forms first with a distinct {11$$\bar{2}$$0} maximum perpendicular to compression. Modelling shows that this is a transformation texture, which can be described by Burgers orientation relationship with variant selection. Experimental results suggest that bcc grains oriented with <100> parallel to compression transform into hcp first. The CPO of the hcp changes only slowly during further pressure and deviatoric stress increase at ambient temperature. After heating to 1600 K, a change in the hcp CPO is observed with alignment of (0001) planes perpendicular to compression that can be interpreted as dominant (0001)<11$$\bar{2}$$0> slip, combined with {10$$\bar{1}$$2}<$$\bar{1}$$011> mechanical twinning, which is similar to the deformation modes suggested previously for pure hcp iron at inner core conditions.  more » « less
Award ID(s):
2154351
PAR ID:
10403048
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
234
Issue:
2
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 790-806
Size(s):
p. 790-806
Sponsoring Org:
National Science Foundation
More Like this
  1. The seismic anisotropy of the Earth’s solid inner core has been the topic of much research. It could be explained by the crystallographic preferred orientation (CPO) developing during convection. The likely phase is hexagonal close-packed iron (hcp), alloyed with nickel and some lighter elements. Here we use high energy synchrotron X-rays to study CPO in Fe-9wt%Si, uniaxially compressed in a diamond anvil cell in radial geometry. The experiments reveal that strong preferred orientation forms in the low-pressure body-centred cubic (bcc) phase that appears to be softer than pure iron. CPO is attributed to dominant {110}<111>slip. The onset of the bcc→hcp transition occurs at a pressure of ≈15 GPa, and the alloy remains in a two phase bcc+hcp state up to 40 GPa. The hcp phase forms first with a distinct {11¯20} maximum perpendicular to compression. Modelling shows that this is a transformation texture, which can be described by Burgers orientation relationship with variant selection. Experimental results suggest that bcc grains oriented with <100> parallel to compression transform into hcp first. The CPO of the hcp changes only slowly during further pressure and deviatoric stress increase at ambient temperature. After heating to 1600 K, a change in the hcp CPO is observed with alignment of (0001) planes perpendicular to compression that can be interpreted as dominant (0001)<11¯20> slip, combined with {10¯12}<¯1011> mechanical twinning, which is similar to the deformation modes suggested previously for pure hcp iron at inner core conditions. 
    more » « less
  2. null (Ed.)
    Understanding the effect of carbon on the density of hcp (hexagonal-close-packed) Fe-C alloys is essential for modeling the carbon content in the Earth’s inner core. Previous studies have focused on the equations of state of iron carbides that may not be applicable to the solid inner core that may incorporate carbon as dissolved carbon in metallic iron. Carbon substitution in hcp-Fe and its effect on the density have never been experimentally studied. We investigated the compression behavior of Fe-C alloys with 0.31 and 1.37 wt % carbon, along with pure iron as a reference, by in-situ X-ray diffraction measurements up to 135 GPa for pure Fe, and 87 GPa for Fe-0.31C and 109 GPa for Fe-1.37C. The results show that the incorporation of carbon in hcp-Fe leads to the expansion of the lattice, contrary to the known effect in body-centered cubic (bcc)-Fe, suggesting a change in the substitution mechanism or local environment. The data on axial compressibility suggest that increasing carbon content could enhance seismic anisotropy in the Earth’s inner core. The new thermoelastic parameters allow us to develop a thermoelastic model to estimate the carbon content in the inner core when carbon is incorporated as dissolved carbon hcp-Fe. The required carbon contents to explain the density deficit of Earth’s inner core are 1.30 and 0.43 wt % at inner core boundary temperatures of 5000 K and 7000 K, respectively. 
    more » « less
  3. Cerium oxide (ceria, CeO2) is frequently used as a standard in applications such as synchrotron and x-ray free electron lasers for calibrating x-ray wavelengths and offers the potential for understanding the high pressure properties and deformation mechanisms in a wide range of similar face centered cubic (fcc) materials. In this study, the pressure dependence of the strength of ceria was investigated up to 38 GPa using angle dispersive x-ray diffraction in a radial geometry in a diamond anvil cell. In this experiment, the difference in the stress along the axis of compression and perpendicular to the direction of compression can be determined, giving a quantity known as the differential stress. It was found that the differential stress (t), a measure of the lower bound for yield strength, initially increases rapidly from 0.35 ± 0.06 GPa to 2.2 ± 0.4 GPa at pressures of 1.8 and 3.8 GPa, respectively. Above 4 GPa, t increases more slowly to 13.8 ± 2.6 GPa at a pressure of 38 GPa. The changes in the preferred orientation (texture) of CeO2 with pressure were also measured, allowing for the determination of active deformation mechanisms using an elasto-viscoplastic self-consistent model (EVPSC). It was found that as pressure increased, the [001] direction had a slight preferred orientation along the axis of compression. Our EVPSC model of experimental fiber (cylindrically symmetric) textures and lattice strains were most consistent with dominant slip activity along {111}⟨11¯0⟩. 
    more » « less
  4. The Earth's inner core started forming when molten iron cooled below the melting point. However, the nucleation mechanism, which is a necessary step of crystallization, has not been well understood. Recent studies have found that it requires an unrealistic degree of undercooling to nucleate the stable, hexagonal, close-packed (hcp) phase of iron that is unlikely to be reached under core conditions and age. This contradiction is referred to as the inner core nucleation paradox. Using a persistent embryo method and molecular dynamics simulations, we demonstrate that the metastable, body-centered, cubic (bcc) phase of iron has a much higher nucleation rate than does the hcp phase under inner core conditions. Thus, the bcc nucleation is likely to be the first step of inner core formation, instead of direct nucleation of the hcp phase. This mechanism reduces the required undercooling of iron nucleation, which provides a key factor in solving the inner core nucleation paradox. The two-step nucleation scenario of the inner core also opens an avenue for understanding the structure and anisotropy of the present inner core. 
    more » « less
  5. null (Ed.)
    Natural kamacite samples (Fe92.5Ni7.5) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the c/a ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal c/a ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. 
    more » « less