skip to main content

Title: Visual Inference Using Homology of Human and Machine Vision Systems
Homology of human and machine vision systems demonstrates that better machine could be designed with human assistance. Similar components can be mapped from neuroimaging data to visual features for recognizing an object. However, inferring object relationships from human vision and machine vision are not clear. To measure the similarity of human and machine visual inference, this work study an inference method using Microsoft COCO dataset. The input data is manually generated, and used for a java-based inference engine, which collects semantic data in a co-occurrence matrix, and writes the data to a knowledge graph in the DOT language. Unlike the black-box property of deep neural network, the proposed method is transparent. When rendered by GraphViz tools, the visible results in the knowledge graph indicated that the COCO dataset-based machine inference is promising when compared to human inference, yielding an accuracy of 64% at best. This novel inference study on the COCO dataset reveals that homology of human and machine vision systems is promising to be bridged. Bigger dataset and more concepts may increase the accuracy in the future work.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Advances in cognitive systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper first proposes a method of formulating model interpretability in visual understanding tasks based on the idea of unfolding latent structures. It then presents a case study in object detection using popular two-stage region-based convolutional neural network (i.e., R-CNN) detection systems. The proposed method focuses on weakly-supervised extractive rationale generation, that is learning to unfold latent discriminative part configurations of object instances automatically and simultaneously in detection without using any supervision for part configurations. It utilizes a top-down hierarchical and compositional grammar model embedded in a directed acyclic AND-OR Graph (AOG) to explore and unfold the space of latent part configurations of regions of interest (RoIs). It presents an AOGParsing operator that seamlessly integrates with the RoIPooling /RoIAlign operator widely used in R-CNN and is trained end-to-end. In object detection, a bounding box is interpreted by the best parse tree derived from the AOG on-the-fly, which is treated as the qualitatively extractive rationale generated for interpreting detection. In experiments, Faster R-CNN is used to test the proposed method on the PASCAL VOC 2007 and the COCO 2017 object detection datasets. The experimental results show that the proposed method can compute promising latent structures without hurting the performance. 
    more » « less
  2. In natural language processing, most models try to learn semantic representations merely from texts. The learned representations encode the “distributional semantics” but fail to connect to any knowledge about the physical world. In contrast, humans learn language by grounding concepts in perception and action and the brain encodes “grounded semantics” for cognition. Inspired by this notion and recent work in vision-language learning, we design a two-stream model for grounding language learning in vision. The model includes a VGG-based visual stream and a Bert-based language stream. The two streams merge into a joint representational space. Through cross-modal contrastive learning, the model first learns to align visual and language representations with the MS COCO dataset. The model further learns to retrieve visual objects with language queries through a cross-modal attention module and to infer the visual relations between the retrieved objects through a bilinear operator with the Visual Genome dataset. After training, the model’s language stream is a stand-alone language model capable of embedding concepts in a visually grounded semantic space. This semantic space manifests principal dimensions explainable with human intuition and neurobiological knowledge. Word embeddings in this semantic space are predictive of human-defined norms of semantic features and are segregated into perceptually distinctive clusters. Furthermore, the visually grounded language model also enables compositional language understanding based on visual knowledge and multimodal image search with queries based on images, texts, or their combinations. 
    more » « less
  3. Human gaze behavior prediction is important for behavioral vision and for computer vision applications. Most models mainly focus on predicting free-viewing behavior using saliency maps, but do not generalize to goal-directed behavior, such as when a person searches for a visual target object. We propose the first inverse reinforcement learning (IRL) model to learn the internal reward function and policy used by humans during visual search. We modeled the viewer’s internal belief states as dynamic contextual belief maps of object locations. These maps were learned and then used to predict behavioral scanpaths for multiple target categories. To train and evaluate our IRL model we created COCO-Search18, which is now the largest dataset of highquality search fixations in existence. COCO-Search18 has 10 participants searching for each of 18 target-object categories in 6202 images, making about 300,000 goal-directed fixations. When trained and evaluated on COCO-Search18, the IRL model outperformed baseline models in predicting search fixation scanpaths, both in terms of similarity to human search behavior and search efficiency. Finally, reward maps recovered by the IRL model reveal distinctive targetdependent patterns of object prioritization, which we interpret as a learned object context. 
    more » « less
  4. null (Ed.)
    The Twitter-Based Knowledge Graph for Researchers project is an effort to construct a knowledge graph of computation-based tasks and corresponding outputs. It will be utilized by subject matter experts, statisticians, and developers. A knowledge graph is a directed graph of knowledge accumulated from a variety of sources. For our application, Subject Matter Experts (SMEs) are experts in their respective non-computer science fields, but are not necessarily experienced with running heavy computation on datasets. As a result, they find it difficult to generate workflows for their projects involving Twitter data and advanced analysis. Workflow management systems and libraries that facilitate computation are only practical when the users of these systems understand what analysis they need to perform. Our goal is to bridge this gap in understanding. Our queryable knowledge graph will generate a visual workflow for these experts and researchers to achieve their project goals. After meeting with our client, we established two primary deliverables. First, we needed to create an ontology of all Twitter-related information that an SME might want to answer. Secondly, we needed to build a knowledge graph based on this ontology and produce a set of APIs to trigger a set of network algorithms based on the information queried to the graph. An ontology is simply the class structure/schema for the graph. Throughout future meetings, we established some more specific additional requirements. Most importantly, the client stressed that users should be able to bring their own data and add it to our knowledge graph. As more research is completed and new technologies are released, it will be important to be able to edit and add to the knowledge graph. Next, we must be able to provide metrics about the data itself. These metrics will be useful for both our own work, and future research surrounding graph search problems and search optimization. Additionally, our system should provide users with information regarding the original domain that the algorithms and workflows were run against. That way they can choose the best workflow for their data. The project team first conducted a literature review, reading reports from the CS5604 Information Retrieval courses in 2016 and 2017 to extract information related to Twitter data and algorithms. This information was used to construct our raw ontology in Google Sheets, which contained a set of dataset-algorithm-dataset tuples. The raw ontology was then converted into nodes and edges csv files for building the knowledge graph. After implementing our original solution on a CentOS virtual machine hosted by the Virginia Tech Department of Computer Science, we transitioned our solution to Grakn, an open-source knowledge graph database that supports hypergraph functionality. When finalizing our workflow paths, we noted some nodes depended on completion of two or more inputs, representing an ”AND” edge. This phenomenon is modeled as a hyperedge with Grakn, initiating our transition from Neo4J to Grakn. Currently, our system supports queries through the console, where a user can type a Graql statement to retrieve information about data in the graph, from relationships to entities to derived rules. The user can also interact with the data via Grakn's data visualizer: Workbase. The user can enter Graql queries to visualize connections within the knowledge graph. 
    more » « less
  5. Abstract

    Vision science, particularly machine vision, has been revolutionized by introducing large-scale image datasets and statistical learning approaches. Yet, human neuroimaging studies of visual perception still rely on small numbers of images (around 100) due to time-constrained experimental procedures. To apply statistical learning approaches that include neuroscience, the number of images used in neuroimaging must be significantly increased. We present BOLD5000, a human functional MRI (fMRI) study that includes almost 5,000 distinct images depicting real-world scenes. Beyond dramatically increasing image dataset size relative to prior fMRI studies, BOLD5000 also accounts for image diversity, overlapping with standard computer vision datasets by incorporating images from the Scene UNderstanding (SUN), Common Objects in Context (COCO), and ImageNet datasets. The scale and diversity of these image datasets, combined with a slow event-related fMRI design, enables fine-grained exploration into the neural representation of a wide range of visual features, categories, and semantics. Concurrently, BOLD5000 brings us closer to realizing Marr’s dream of a singular vision science–the intertwined study of biological and computer vision.

    more » « less