skip to main content


Title: Control of stereogenic oxygen in a helically chiral oxonium ion
Abstract The control of tetrahedral carbon stereocentres remains a focus of modern synthetic chemistry and is enabled by their configurational stability. By contrast, trisubstituted nitrogen 1 , phosphorus 2 and sulfur compounds 3 undergo pyramidal inversion, a fundamental and well-recognized stereochemical phenomenon that is widely exploited 4 . However, the stereochemistry of oxonium ions—compounds bearing three substituents on a positively charged oxygen atom—is poorly developed and there are few applications of oxonium ions in synthesis beyond their existence as reactive intermediates 5,6 . There are no examples of configurationally stable oxonium ions in which the oxygen atom is the sole stereogenic centre, probably owing to the low barrier to oxygen pyramidal inversion 7 and the perception that all oxonium ions are highly reactive. Here we describe the design, synthesis and characterization of a helically chiral triaryloxonium ion in which inversion of the oxygen lone pair is prevented through geometric restriction to enable it to function as a determinant of configuration. A combined synthesis and quantum calculation approach delineates design principles that enable configurationally stable and room-temperature isolable salts to be generated. We show that the barrier to inversion is greater than 110 kJ mol −1 and outline processes for resolution. This constitutes, to our knowledge, the only example of a chiral non-racemic and configurationally stable molecule in which the oxygen atom is the sole stereogenic centre.  more » « less
Award ID(s):
1955876
NSF-PAR ID:
10403099
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature
Volume:
615
Issue:
7952
ISSN:
0028-0836
Page Range / eLocation ID:
430 to 435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Allylboron reagents are popular in synthesis owing to their versatility and the predictable stereochemical outcomes of their reactions with carbonyl compounds. Herein, we describe the synthesis of (Z,Z)‐hexadienyl bis‐boronate1, a configurationally stable, crystalline, and easy to handle compound, which represents a class of bis‐allylic boron reagents with heretofore untapped synthetic potential. In combination with a chiral phosphoric acid catalyst, the reagent can be employed for the enantioselective allyl transfer reaction to a variety of one‐pot transformations, enabling swift access to functionalized 1,n‐diols. The in situ conversion of the reagent into the corresponding bis‐borinic ester allows for the direct and diastereoselective two‐fold allyl transfer to aldehydes. This affordsC2‐ orCi‐symmetric stereotetrads containing a 1,4‐diol moiety for natural product synthesis. The usefulness of our method was demonstrated with a short synthesis of the lignan (±)‐neo‐olivil.

     
    more » « less
  2. Abstract

    Eleven racemic ethanolamine derivatives were prepared, and their enantiomers were separated using liquid chromatography with various chiral columns. These derivatives included chiral vicinal amino alcohols, β‐hydroxy ureas, β‐hydroxy thioureas, and β‐hydroxy guanidines, all of which are present in many active pharmaceutical ingredients. The screening study was performed with six chiral stationary phase containing columns, including four recently introduced superficially porous particles bonded with two macrocyclic glycopeptides, a cyclodextrin derivative and a cyclofructan derivative. The two remaining columns contained chiral stationary phases, based on either a cellulose derivative or derivatized amylose, both bonded to fully porous particles. The cyclodextrin and cellulose‐based chiral stationary phases proved to be the most broadly effective selectors and were able to separate 8 and 7 of the 11 tested compounds, respectively. With respect to analyte structural features, marked differences in enantiorecognition were observed between compounds containing phenyl and cyclohexyl groups adjacent to the stereogenic center. Additionally, replacing a small electronegative oxygen atom by a larger and less electronegative sulfur atom induced a significant difference in chiral recognition by the cellulose derivative as well as by the vancomycin‐based chiral selectors.

     
    more » « less
  3. Abstract

    Nucleophilic substitution results in inversion of configuration at the electrophilic carbon center (SN2) or racemization (SN1). The stereochemistry of the nucleophile is rarely considered, but phosphines, which have a high barrier to pyramidal inversion, attack electrophiles with retention of configuration at P. Surprisingly, cyclization of bifunctional secondary phosphine alkyl tosylates proceeded under mild conditions with inversion of configuration at the nucleophile to yield P‐stereogenicsyn‐phosphiranes. DFT studies suggested that the novel stereochemistry results from acid‐promoted tosylate dissociation to yield an intermediate phosphenium‐bridged cation, which undergoessyn‐selective cyclization.

     
    more » « less
  4. Abstract

    Nucleophilic substitution results in inversion of configuration at the electrophilic carbon center (SN2) or racemization (SN1). The stereochemistry of the nucleophile is rarely considered, but phosphines, which have a high barrier to pyramidal inversion, attack electrophiles with retention of configuration at P. Surprisingly, cyclization of bifunctional secondary phosphine alkyl tosylates proceeded under mild conditions with inversion of configuration at the nucleophile to yield P‐stereogenicsyn‐phosphiranes. DFT studies suggested that the novel stereochemistry results from acid‐promoted tosylate dissociation to yield an intermediate phosphenium‐bridged cation, which undergoessyn‐selective cyclization.

     
    more » « less
  5. Post-synthetic phase transfer ligand exchange has been established as a simple, reliable, and versatile method for the synthesis of chiral, optically active colloidal nanocrystals displaying circular dichroism (CD) and circularly polarized luminescence (CPL). Herein we present a water-free and purification-free cyclohexane → methanol ligand exchange system that led to the synthesis of stable, non-aggregating chiral and fluorescent cadmium sulfide quantum dots (CdS QDs). Absorption and emission studies revealed that the carboxylate capping ligands can tune the band gap by up to 65 meV as well as control the band gap and deep trap emission pathways. The CD data revealed that the addition of a 2nd stereogenic center did not automatically lead to an increase of the CD anisotropy of QDs, but rather match/mismatch cooperativity effects must be considered in the transfer of the chirality from the capping ligands to the achiral nanocrystals. Variation in position of the functional groups as well as the chemical identity of the functional groups impacted both the shape and anisotropy of the induced CD spectra and revealed the importance of the functional groups’ coordination and polarity on the binding geometry and induced chiroptical properties. Finally, we describe the first example where CD spectra of QDs capped with the same ligand and dissolved in the same solvent displayed very different spectral profiles. This work provides deeper insight into induced CD of QDs and paves the path to rational design of chiral nanomaterials. 
    more » « less