skip to main content


Title: Haplotype-aware variant selection for genome graphs
Graph-based genome representations have proven to be a powerful tool in genomic analysis due to their ability to encode variations found in multiple haplotypes and capture population genetic diversity. Such graphs also unavoidably contain paths which switch between haplotypes (i.e., recombinant paths) and thus do not fully match any of the constituent haplotypes. The number of such recombinant paths increases combinatorially with path length and cause inefficiencies and false positives when mapping reads. In this paper, we study the problem of finding reduced haplotype-aware genome graphs that incorporate only a selected subset of variants, yet contain paths corresponding to all α-long substrings of the input haplotypes (i.e., non-recombinant paths) with at most δ mismatches. Solving this problem optimally, i.e., minimizing the number of variants selected, is previously known to be NP-hard. Here, we first establish several inapproximability results regarding finding haplotype-aware reduced variation graphs of optimal size. We then present an integer linear programming (ILP) formulation for solving the problem, and experimentally demonstrate this is a computationally feasible approach for real-world problems and provides far superior reduction compared to prior approaches.  more » « less
Award ID(s):
1816027
NSF-PAR ID:
10403231
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
Page Range / eLocation ID:
1-9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The identification of genomic regions affected by selection is one of the most important goals in population genetics. If temporal data are available, allele frequency changes at SNP positions are often used for this purpose. Here we provide a new testing approach that uses haplotype frequencies instead of allele frequencies.

    Results

    Using simulated data, we show that compared to SNP based test, our approach has higher power, especially when the number of candidate haplotypes is small or moderate. To improve power when the number of haplotypes is large, we investigate methods to combine them with a moderate number of haplotype subsets. Haplotype frequencies can often be recovered with less noise than SNP frequencies, especially under pool sequencing, giving our test an additional advantage. Furthermore, spurious outlier SNPs may lead to false positives, a problem usually not encountered when working with haplotypes. Post hoc tests for the number of selected haplotypes and for differences between their selection coefficients are also provided for a better understanding of the underlying selection dynamics. An application on a real data set further illustrates the performance benefits.

    Conclusions

    Due to less multiple testing correction and noise reduction, haplotype based testing is able to outperform SNP based tests in terms of power in most scenarios.

     
    more » « less
  2. Buerkle, Alex (Ed.)
    The inference of positive selection in genomes is a problem of great interest in evolutionary genomics. By identifying putative regions of the genome that contain adaptive mutations, we are able to learn about the biology of organisms and their evolutionary history. Here we introduce a composite likelihood method that identifies recently completed or ongoing positive selection by searching for extreme distortions in the spatial distribution of the haplotype frequency spectrum along the genome relative to the genome-wide expectation taken as neutrality. Furthermore, the method simultaneously infers two parameters of the sweep: the number of sweeping haplotypes and the “width” of the sweep, which is related to the strength and timing of selection. We demonstrate that this method outperforms the leading haplotype-based selection statistics, though strong signals in low-recombination regions merit extra scrutiny. As a positive control, we apply it to two well-studied human populations from the 1000 Genomes Project and examine haplotype frequency spectrum patterns at the LCT and MHC loci. We also apply it to a data set of brown rats sampled in NYC and identify genes related to olfactory perception. To facilitate use of this method, we have implemented it in user-friendly open source software. 
    more » « less
  3. Birol, Inanc (Ed.)
    Abstract Motivation Oxford Nanopore sequencing has great potential and advantages in population-scale studies. Due to the cost of sequencing, the depth of whole-genome sequencing for per individual sample must be small. However, the existing single nucleotide polymorphism (SNP) callers are aimed at high-coverage Nanopore sequencing reads. Detecting the SNP variants on low-coverage Nanopore sequencing data is still a challenging problem. Results We developed a novel deep learning-based SNP calling method, NanoSNP, to identify the SNP sites (excluding short indels) based on low-coverage Nanopore sequencing reads. In this method, we design a multi-step, multi-scale and haplotype-aware SNP detection pipeline. First, the pileup model in NanoSNP utilizes the naive pileup feature to predict a subset of SNP sites with a Bi-long short-term memory (LSTM) network. These SNP sites are phased and used to divide the low-coverage Nanopore reads into different haplotypes. Finally, the long-range haplotype feature and short-range pileup feature are extracted from each haplotype. The haplotype model combines two features and predicts the genotype for the candidate site using a Bi-LSTM network. To evaluate the performance of NanoSNP, we compared NanoSNP with Clair, Clair3, Pepper-DeepVariant and NanoCaller on the low-coverage (∼16×) Nanopore sequencing reads. We also performed cross-genome testing on six human genomes HG002–HG007, respectively. Comprehensive experiments demonstrate that NanoSNP outperforms Clair, Pepper-DeepVariant and NanoCaller in identifying SNPs on low-coverage Nanopore sequencing data, including the difficult-to-map regions and major histocompatibility complex regions in the human genome. NanoSNP is comparable to Clair3 when the coverage exceeds 16×. Availability and implementation https://github.com/huangnengCSU/NanoSNP.git. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. Kim, Yuseob (Ed.)
    Abstract Selective sweeps are frequent and varied signatures in the genomes of natural populations, and detecting them is consequently important in understanding mechanisms of adaptation by natural selection. Following a selective sweep, haplotypic diversity surrounding the site under selection decreases, and this deviation from the background pattern of variation can be applied to identify sweeps. Multiple methods exist to locate selective sweeps in the genome from haplotype data, but none leverages the power of a model-based approach to make their inference. Here, we propose a likelihood ratio test statistic T to probe whole-genome polymorphism data sets for selective sweep signatures. Our framework uses a simple but powerful model of haplotype frequency spectrum distortion to find sweeps and additionally make an inference on the number of presently sweeping haplotypes in a population. We found that the T statistic is suitable for detecting both hard and soft sweeps across a variety of demographic models, selection strengths, and ages of the beneficial allele. Accordingly, we applied the T statistic to variant calls from European and sub-Saharan African human populations, yielding primarily literature-supported candidates, including LCT, RSPH3, and ZNF211 in CEU, SYT1, RGS18, and NNT in YRI, and HLA genes in both populations. We also searched for sweep signatures in Drosophila melanogaster, finding expected candidates at Ace, Uhg1, and Pimet. Finally, we provide open-source software to compute the T statistic and the inferred number of presently sweeping haplotypes from whole-genome data. 
    more » « less
  5. null (Ed.)
    As a result of millions of years of transposon activity, multiple rounds of ancient polyploidization, and large populations that preserve diversity, maize has an extremely structurally diverse genome, evidenced by high-quality genome assemblies that capture substantial levels of both tropical and temperate diversity. We generated a pangenome representation (the Practical Haplotype Graph, PHG) of these assemblies in a database, representing the pangenome haplotype diversity and providing an initial estimate of structural diversity. We leveraged the pangenome to accurately impute haplotypes and genotypes of taxa using various kinds of sequence data, ranging from WGS to extremely-low coverage GBS. We imputed the genotypes of the recombinant inbred lines of the NAM population with over 99% mean accuracy, while unrelated germplasm attained a mean imputation accuracy of 92 or 95% when using GBS or WGS data, respectively. Most of the imputation errors occur in haplotypes within European or tropical germplasm, which have yet to be represented in the maize PHG database. Also, the PHG stores the imputation data in a 30,000-fold more space-efficient manner than a standard genotype file, which is a key improvement when dealing with large scale data. 
    more » « less