skip to main content


Title: PrimeNet: Pre-training for Irregular Multivariate Time Series
Real-world applications often involve irregular time series, for which the time intervals between successive observations are non-uniform. Irregularity across multiple features in a multi-variate time series further results in a different subset of features at any given time (i.e., asynchronicity). Existing pre-training schemes for time-series, however, often assume regularity of time series and make no special treatment of irregularity. We argue that such irregularity offers insight about domain property of the data—for example, frequency of hospital visits may signal patient health condition—that can guide representation learning. In this work, we propose PrimeNet to learn a self-supervised representation for irregular multivariate time-series. Specifically, we design a timesensitive contrastive learning and data reconstruction task to pre-train a model. Irregular time-series exhibits considerable variations in sampling density over time. Hence, our triplet generation strategy follows the density of the original data points, preserving its native irregularity. Moreover, the sampling density variation over time makes data reconstruction difficult for different regions. Therefore, we design a data masking technique that always masks a constant time duration to accommodate reconstruction for regions of different sampling density. We learn with these tasks using unlabeled data to build a pre-trained model and fine-tune on a downstream task with limited labeled data, in contrast with existing fully supervised approach for irregular time-series, requiring large amounts of labeled data. Experiment results show that PrimeNet significantly outperforms state-of-the-art methods on naturally irregular and asynchronous data from Healthcare and IoT applications for several downstream tasks, including classification, interpolation, and regression.  more » « less
Award ID(s):
2040727
NSF-PAR ID:
10403523
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multivariate time-series data are frequently observed in critical care settings and are typically characterized by sparsity (missing information) and irregular time intervals. Existing approaches for learning representations in this domain handle these challenges by either aggregation or imputation of values, which in-turn suppresses the fine-grained information and adds undesirable noise/overhead into the machine learning model. To tackle this problem, we propose a S elf-supervised Tra nsformer for T ime- S eries (STraTS) model, which overcomes these pitfalls by treating time-series as a set of observation triplets instead of using the standard dense matrix representation. It employs a novel Continuous Value Embedding technique to encode continuous time and variable values without the need for discretization. It is composed of a Transformer component with multi-head attention layers, which enable it to learn contextual triplet embeddings while avoiding the problems of recurrence and vanishing gradients that occur in recurrent architectures. In addition, to tackle the problem of limited availability of labeled data (which is typically observed in many healthcare applications), STraTS utilizes self-supervision by leveraging unlabeled data to learn better representations by using time-series forecasting as an auxiliary proxy task. Experiments on real-world multivariate clinical time-series benchmark datasets demonstrate that STraTS has better prediction performance than state-of-the-art methods for mortality prediction, especially when labeled data is limited. Finally, we also present an interpretable version of STraTS, which can identify important measurements in the time-series data. Our data preprocessing and model implementation codes are available at https://github.com/sindhura97/STraTS . 
    more » « less
  2. null (Ed.)
    Recent years have witnessed the enormous success of text representation learning in a wide range of text mining tasks. Earlier word embedding learning approaches represent words as fixed low-dimensional vectors to capture their semantics. The word embeddings so learned are used as the input features of task-specific models. Recently, pre-trained language models (PLMs), which learn universal language representations via pre-training Transformer-based neural models on large-scale text corpora, have revolutionized the natural language processing (NLP) field. Such pre-trained representations encode generic linguistic features that can be transferred to almost any text-related applications. PLMs outperform previous task-specific models in many applications as they only need to be fine-tuned on the target corpus instead of being trained from scratch. In this tutorial, we introduce recent advances in pre-trained text embeddings and language models, as well as their applications to a wide range of text mining tasks. Specifically, we first overview a set of recently developed self-supervised and weakly-supervised text embedding methods and pre-trained language models that serve as the fundamentals for downstream tasks. We then present several new methods based on pre-trained text embeddings and language models for various text mining applications such as topic discovery and text classification. We focus on methods that are weakly-supervised, domain-independent, language-agnostic, effective and scalable for mining and discovering structured knowledge from large-scale text corpora. Finally, we demonstrate with real world datasets how pre-trained text representations help mitigate the human annotation burden and facilitate automatic, accurate and efficient text analyses. 
    more » « less
  3. Speech emotion recognition (SER) is a challenging task due to the limited availability of real-world labeled datasets. Since it is easier to find unlabeled data, the use of self-supervised learning (SSL) has become an attractive alternative. This study proposes new pre-text tasks for SSL to improve SER. While our target application is SER, the proposed pre-text tasks include audio-visual formulations, leveraging the relationship between acoustic and facial features. Our proposed approach introduces three new unimodal and multimodal pre-text tasks that are carefully designed to learn better representations for predicting emotional cues from speech. Task 1 predicts energy variations (high or low) from a speech sequence. Task 2 uses speech features to predict facial activation (high or low) based on facial landmark movements. Task 3 performs a multi-class emotion recognition task on emotional labels obtained from combinations of action units (AUs) detected across a video sequence. We pre-train a network with 60.92 hours of unlabeled data, fine-tuning the model for the downstream SER task. The results on the CREMA-D dataset show that the model pre-trained on the proposed domain-specific pre-text tasks significantly improves the precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up to 4.9%) of our SER system. 
    more » « less
  4. Self-supervised learning with masked autoencoders has recently gained popularity for its ability to produce effective image or textual representations, which can be applied to various downstream tasks without retraining. However, we observe that the current masked autoencoder models lack good generalization ability on graph data. To tackle this issue, we propose a novel graph masked autoencoder framework called GiGaMAE. Different from existing masked autoencoders that learn node presentations by explicitly reconstructing the original graph components (e.g., features or edges), in this paper, we propose to collaboratively reconstruct informative and integrated latent embeddings. By considering embeddings encompassing graph topology and attribute information as reconstruction targets, our model could capture more generalized and comprehensive knowledge. Furthermore, we introduce a mutual information based reconstruction loss that enables the effective reconstruction of multiple targets. This learning objective allows us to differentiate between the exclusive knowledge learned from a single target and common knowledge shared by multiple targets. We evaluate our method on three downstream tasks with seven datasets as benchmarks. Extensive experiments demonstrate the superiority of GiGaMAE against state-of-the-art baselines. We hope our results will shed light on the design of foundation models on graph-structured data. Our code is available at: https://github.com/sycny/GiGaMAE. 
    more » « less
  5. null (Ed.)
    Collecting large annotated datasets in Remote Sensing is often expensive and thus can become a major obstacle for training advanced machine learning models. Common techniques of addressing this issue, based on the underlying idea of pre-training the Deep Neural Networks (DNN) on freely available large datasets, cannot be used for Remote Sensing due to the unavailability of such large-scale labeled datasets and the heterogeneity of data sources caused by the varying spatial and spectral resolution of different sensors. Self-supervised learning is an alternative approach that learns feature representation from unlabeled images without using any human annotations. In this paper, we introduce a new method for land cover mapping by using a clustering-based pretext task for self-supervised learning. We demonstrate the effectiveness of the method on two societally relevant applications from the aspect of segmentation performance, discriminative feature representation learning, and the underlying cluster structure. We also show the effectiveness of the active sampling using the clusters obtained from our method in improving the mapping accuracy given a limited budget of annotating. 
    more » « less