skip to main content


Title: Interfacial plasticity governs strain delocalization in metallic nanoglasses
Intrinsic size effects in nanoglass plasticity have been connected to the structural length scales imposed by the interfacial network, and control over this behavior is critical to designing amorphous alloys with improved mechanical response. In this paper, atomistic simulations are employed to probe strain delocalization in nanoglasses with explicit correlation to the interfacial characteristics and length scales of the amorphous grain structure. We show that strength is independent of grain size under certain conditions, but scales with the excess free volume and degree of short-range ordering in the interfaces. Structural homogenization upon annealing of the nanoglasses increases their strength toward the value of the bulk metallic glass; however, continued partitioning of strain to the interfacial regions inhibits the formation of a primary shear band. Intrinsic size effects in nanoglass plasticity thus originate from biased plastic strain accumulation within the interfacial regions, which will ultimately govern strain delocalization and homogenous flow in nanoglasses.  more » « less
Award ID(s):
1554411
NSF-PAR ID:
10403581
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Materials Research
Volume:
34
Issue:
13
ISSN:
0884-2914
Page Range / eLocation ID:
2325 to 2336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Friction-generated heat and the subsequent thermal evolution control fault material properties and thus strength during the earthquake cycle. We document evidence for transient, nanoscale fault rheology on a high-gloss, light-reflective hematite fault mirror (FM). The FM cuts specularite with minor quartz from the Pleistocene El Laco Fe-ore deposit, northern Chile. Scanning and transmission electron microscopy data reveal that the FM volume comprises a <50-μm-thick zone of polygonal hematite nanocrystals with spherical silica inclusions, rhombohedral twins, no shape or crystallographic preferred orientation, decreasing grain size away from the FM surface, and FM surface magnetite nanoparticles and Fe2+ suboxides. Sub–5-nm-thick silica films encase hematite grains and connect to amorphous interstitial silica. Observations imply that coseismic shear heating (temperature >1000 °C) generated transiently amorphous, intermixed but immiscible, and rheologically weak Fe-oxide and silica. Hematite regrowth in a fault-perpendicular thermal gradient, sintering, twinning, and a topographic network of nanometer-scale ridges from crystals interlocking across the FM surface collectively restrengthened fault material. Results reveal how temperature-induced weakening preconditions fault healing. Nanoscale transformations may promote subsequent strain delocalization and development of off-fault damage. 
    more » « less
  2. null (Ed.)
    Nanodomained heterogenous structures characterized by randomly dispersed nanograins (NGs) embedded in the coarser grains (CGs) have demonstrated an exciting potential to break the strength–ductility trade-off, providing high strength without the loss of ductility. Here, using a combination of discrete crystal plasticity finite element (discrete-CPFE) model and dislocation density-based CPFE model, we study the effects of grain size, volume fraction of nanograins on the strength and deformation in nanodomained materials. Our analysis shows that the overall flow stresses of nanodomained samples are equal or higher than the strengths predicted by rule of mixtures. Smaller NGs or higher volume fraction of NGs can make the nanodomained samples stronger, as they can be more effective to promote the dislocation accumulations inside the CGs and eventually raise the critical resolved shear stress for each slip system during the plastic flow. Areas surrounding NGs stored higher dislocation densities and less plastic strain, due to the restricted dislocation motion. Furthermore, NGs grain embedded in the CGs can effectively reduce the anisotropy of strength in the nanodomained samples. 
    more » « less
  3. Abstract

    Plastic deformation of olivine at relatively low temperatures (i.e., low‐temperature plasticity) likely controls the strength of the lithospheric mantle in a variety of geodynamic contexts. Unfortunately, laboratory estimates of the strength of olivine deforming by low‐temperature plasticity vary considerably from study to study, limiting confidence in extrapolation to geological conditions. Here we present the results of deformation experiments on olivine single crystals and aggregates conducted in a deformation‐DIA at confining pressures of 5 to 9 GPa and temperatures of 298 to 1473 K. These results demonstrate that, under conditions in which low‐temperature plasticity is the dominant deformation mechanism, fine‐grained samples are stronger at yield than coarse‐grained samples, and the yield stress decreases with increasing temperature. All samples exhibited significant strain hardening until an approximately constant flow stress was reached. The magnitude of the increase in stress from the yield stress to the flow stress was independent of grain size and temperature. Cyclical loading experiments revealed a Bauschinger effect, wherein the initial yield strength is higher than the yield strength during subsequent cycles. Both strain hardening and the Bauschinger effect are interpreted to result from the development of back stresses associated with long‐range dislocation interactions. We calibrated a constitutive model based on these observations, and extrapolation of the model to geological conditions predicts that the strength of the lithosphere at yield is low compared to previous experimental predictions but increases significantly with increasing strain. Our results resolve apparent discrepancies in recent observational estimates of the strength of the oceanic lithosphere.

     
    more » « less
  4. Refractory multi-principal element alloys exhibiting promising mechanical properties such as excellent strength retention at elevated temperatures have been attracting increasing attention. Although their inherent chemical complexity is considered a defining feature, a challenge arises in predicting local chemical ordering, particularly in grain boundary regions with an enhanced structural disorder. In this study, we use atomistic simulations of a large group of bicrystal models to sample a wide variety of interfacial sites (grain boundary) in NbMoTaW and explore emergent trends in interfacial segregation and the underlying structural and chemical driving factors. Sampling hundreds of bicrystals along the [001] symmetric tilt axis and analyzing more than one hundred and thirty thousand grain boundary sites with a variety of local atomic environments, we uncover segregation trends in NbMoTaW. While Nb is the dominant segregant, more notable are the segregation patterns that deviate from expected behavior and mark situations where local structural and chemical driving forces lead to interesting segregation events. For example, incomplete depletion of Ta in low-angle boundaries results from chemical pinning due to favorable local compositional environments associated with chemical short-range ordering. Finally, machine learning models capturing and comparing the structural and chemical features of interfacial sites are developed to weigh their relative importance and contributions to segregation tendency, revealing a significant increase in predictive capability when including local chemical information. Overall, this work, highlighting the complex interplay between the local grain boundary structure and chemical short-range ordering, suggests tunable segregation and chemical ordering by tailoring grain boundary structure in multi-principal element alloys. 
    more » « less
  5. Abstract

    While laser-printed metals do not tend to match the mechanical properties and thermal stability of conventionally-processed metals, incorporating and dispersing nanoparticles in them should enhance their performance. However, this remains difficult to do during laser additive manufacturing. Here, we show that aluminum reinforced by nanoparticles can be deposited layer-by-layer via laser melting of nanocomposite powders, which enhance the laser absorption by almost one order of magnitude compared to pure aluminum powders. The laser printed nanocomposite delivers a yield strength of up to 1000 MPa, plasticity over 10%, and Young’s modulus of approximately 200 GPa, offering one of the highest specific Young’s modulus and specific yield strengths among structural metals, as well as an improved specific strength and thermal stability up to 400 °C compared to other aluminum-based materials. The improved performance is attributed to a high density of well-dispersed nanoparticles, strong interfacial bonding between nanoparticles and Al matrix, and ultrafine grain sizes.

     
    more » « less