In metropolitan areas with heavy transit demands, electric vehicles (EVs) are expected to be continuously driving without recharging downtime. Wireless Power Transfer (WPT) provides a promising solution for in-motion EV charging. Nevertheless, previous works are not directly applicable for the deployment of in-motion wireless chargers due to their different charging characteristics. The challenge of deploying in-motion wireless chargers to support the continuous driving of EVs in a metropolitan road network with the minimum cost remains unsolved. We propose CatCharger to tackle this challenge. By analyzing a metropolitan-scale dataset, we found that traffic attributes like vehicle passing speed, daily visit frequency at intersections (i.e., landmarks) and their variances are diverse, and these attributes are critical to in-motion wireless charging performance. Driven by these observations, we first group landmarks with similar attribute values using the entropy minimization clustering method, and select candidate landmarks from the groups with suitable attribute values. Then, we use the Kernel Density Estimator (KDE) to deduce the expected vehicle residual energy at each candidate landmark and consider EV drivers’ routing choice behavior in charger deployment. Finally, we determine the deployment locations by formulating and solving a multi-objective optimization problem, which maximizes vehicle traffic flow at charger deployment positions while guaranteeing the continuous driving of EVs at each landmark. Trace-driven experiments demonstrate that CatCharger increases the ratio of driving EVs at the end of a day by 12.5% under the same deployment cost.
more »
« less
Greenhouse gas emissions embodied in electric vehicle charging infrastructure: a method and case study of Georgia, US 2021–2050
Abstract Electric vehicle (EV) charging infrastructure buildout is a major greenhouse gas (GHG) mitigation strategy among governments and municipalities. In the United States, where petroleum-based transportation is the largest single source of GHG emissions, the Infrastructure Investment and Jobs Act of 2021 will support building a national network of 500 000 EV charging units. While the climate benefits of driving electric are well established, the potential embodied climate impacts of building out the charging infrastructure are relatively unexplored. Furthermore, ‘charging infrastructure’ tends to be conceptualized in terms of plugs and stations, leaving out the electrical and communications systems that will be required to support decarbonized and efficient charging. In this study, we present an EV charging system (EVCS) model that describes the material and operational components required for charging and forecasts the scale-up of these components based on EV market share scenarios out to 2050. We develop a methodology for measuring GHG emissions embodied in the buildout of EVCS and incurred during operation of the EVCS, including vehicle recharging, and we demonstrate this model using a case study of Georgia (USA). We find that cumulative GHG emissions from EVCS buildout and use are negligible, at less than 1% of cumulative emissions from personal light duty vehicle travel (including EV recharging and conventional combustion vehicle driving). If an accelerated EVCS buildout were to stimulate a faster transition of the vehicle fleet, the emissions reduction of electrification will far outweigh emissions embodied in EVCS components, even assuming relatively high carbon inputs prior to decarbonization.
more »
« less
- Award ID(s):
- 1931980
- PAR ID:
- 10403680
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research: Infrastructure and Sustainability
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2634-4505
- Format(s):
- Medium: X Size: Article No. 015013
- Size(s):
- Article No. 015013
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
By displacing gasoline and diesel fuels, electric cars and fleets offer significant public health benefits by reducing emissions from the transportation sector. However, public confidence in the reliability of charging infrastructure remains a fundamental barrier to adoption. Using large-scale social data and machine learning based on 12,720 U.S. electric vehicle charging stations, we provide national evidence on how well the existing charging infrastructure is serving the needs of the expanding population of EV drivers in 651 core-based statistical areas in the United States. Contrary to predictions, we find that stations at private charging locations do not outperform public charging locations provided by government. We also find evidence of higher negative sentiment in the dense urban centers, where issues of charge rage and congestion may be the most prominent. Overall, 40% of drivers using mobility apps have faced negative experiences at EV charging stations, a problem that needs to be fixed as the market expands.more » « less
-
There is a growing interest in applying computational tools to the automatic discovery of social and economic behavior. For example, with decisions involving resource allocation related to public infrastructure, the ability to predict failures can allow for more efficient policy responses. In this paper, we use social data from a popular electric vehicle (EV) driver app to characterize the emerging EV charging station infrastructure. We introduce a typology of EV charging experiences collected from user reviews and deploy text classification algorithms, including convolutional neural networks (CNN), to automatically learn about potential failures. We use machine learning techniques as a pre-processing tool for econometric analyses on the quality of service delivery. After classifying the reviews into 9 main user topics and 34 subtopics, we find that the dominant issues in EV charging relate to station functionality and availability, which drive negative consumer experience. Contrary to the public discourse about EVs, range anxiety was not of large concern to existing EV drivers. Based on our findings, we move towards automated identification of failures in public charging infrastructure that can significantly reduce research evaluation costs through relatively simple computational solutions.more » « less
-
Cities around the world are increasingly promoting electric vehicles (EV) to reduce and ultimately eliminate greenhouse gas emissions. A huge number of EVs will put unprecedented stress on the power grid. To efficiently serve the increased charging load, these EVs need to be charged in a coordinated fashion. One promising coordination strategy is vehicle-to-vehicle (V2V) charging coordination, enabling EVs to sell their surplus energy in an ad-hoc, peer to peer manner. This paper introduces an Information Centric Networking (ICN)-based protocol to support ad-hoc V2V charging coordination (V2V-CC). Our evaluations demonstrate that V2V-CC can provide added flexibility, fault tolerance, and reduced communication latency than a conventional centralized cloud based approach. We show that V2V-CC can achieve a 93% reduction in protocol completion time compared to a conventional approach. We also show that V2V-CC also works well under extreme packet loss, making it ideal for V2V charging coordination.more » « less
-
The inconvenience of charging is one of the major concern for potential electric vehicle (EV) users. In addition to building more charging facilities, electric vehicle charging assistance service has emerged for making EV charging more convenient to customers. In this paper, we consider an optimal EV charging station location problem with two types of customers. One is ordinary self-charging customers whereas the other is customers using a new service mode called valet-charging. We formulate the problem via bi-level location optimization model, where the lower level problem is a game model that characterizes customers’ station choice behaviors. To solve the hard nonlinear mixed-integer optimization problem, we design an adaptive large neighbourhood search (ALNS) algorithm for the upper level problem and a construct-improve heuristic for the lower level problem. We conduct numerical experiments to justify the efficiency of our solution method. We also conduct a need-inspired case study to derive practical insights which will help EV charging assistant service providers make strategic decisions. The convenience of charging service is one major concern for EVs. In China, NIO Inc., NETA AUTO, and FAW-Volkswagen have started to provide valet-charging service. Charging station location problem becomes complicated while taking this service into account. We believe our work develops an effective tool for charging station planners to analyze station locations as well as the impact of valet charging services.more » « less
An official website of the United States government
