skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: On the morphology of the gamma-ray galactic centre excess
ABSTRACT

The characteristics of the galactic centre excess (GCE) emission observed in gamma-ray energies – especially the morphology of the GCE – remain a hotly debated subject. The manner in which the dominant diffuse gamma-ray background is modelled has been claimed to have a determining effect on the preferred morphology. In this work, we compare two distinct approaches to the galactic diffuse gamma-ray emission background: the first approach models this emission through templates calculated from a sequence of well-defined astrophysical assumptions, while the second approach divides surrogates for the background gamma-ray emission into cylindrical galactocentric rings with free independent normalizations. At the latitudes that we focus on, we find that the former approach works better, and that the overall best fit is obtained for an astrophysically motivated fit when the GCE follows the morphology expected of dark matter annihilation. Quantitatively, the improvement compared with the best ring-based fits is roughly 6500 in the χ2 and roughly 4000 in the log of the Bayesian evidence.

 
more » « less
NSF-PAR ID:
10403681
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Volume:
522
Issue:
1
ISSN:
1745-3925
Format(s):
Medium: X Size: p. L21-L25
Size(s):
["p. L21-L25"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Extragalactic background light (EBL) plays an important role in cosmology since it traces the history of galaxy formation and evolution. Such diffuse radiation from near-UV to far-infrared wavelengths can interact with γ -rays from distant sources such as active galactic nuclei (AGNs), and is responsible for the high-energy absorption observed in their spectra. However, probing the EBL from γ -ray spectra of AGNs is not trivial due to internal processes that can mimic its effect. Such processes are usually taken into account in terms of curvature of the intrinsic spectrum. Hence, an improper choice of parametrization for the latter can seriously affect EBL reconstruction. In this paper, we propose a statistical approach that avoids a priori assumptions on the intrinsic spectral curvature and that, for each source, selects the best-fit model on a solid statistical basis. By combining the Fermi -LAT observations of 490 blazars, we determine the γ -ray-inferred level of EBL for various state-of-the-art EBL models. We discuss the EBL level obtained from the spectra of both BL Lacs and flat spectrum radio quasars (FSRQ) in order to investigate the impact of internal absorption in different classes of objects. We further scrutinize constraints on the EBL evolution from γ -ray observations by reconstructing the EBL level in four redshift ranges, up to z  ∼ 2.5. The approach implemented in this paper, carefully addressing the question of the modeling of the intrinsic emission at the source, can serve as a solid stepping stone for studies of hundreds of high-quality spectra acquired by next-generation γ -ray instruments. 
    more » « less
  2. Abstract

    We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (Hi) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, Hiis strongly correlated with the dust and partly organized into filaments that are aligned with the local magnetic field. We analyze the deep BICEP/Keck data at 95, 150, and 220 GHz, over the low-column-density region of sky where BICEP/Keck has set the best limits on primordial gravitational waves. We separate the Hiemission into distinct velocity components and detect dust polarization correlated with the local Galactic Hibut not with the Hiassociated with Magellanic Streami. We present a robust, multifrequency detection of polarized dust emission correlated with the filamentary Himorphology template down to 95 GHz. For assessing its utility for foreground cleaning, we report that the Himorphology template correlates inBmodes at a ∼10%–65% level over the multipole range 20 << 200 with the BICEP/Keck maps, which contain contributions from dust, CMB, and noise components. We measure the spectral index of the filamentary dust component spectral energy distribution to beβ= 1.54 ± 0.13. We find no evidence for decorrelation in this region between the filaments and the rest of the dust field or from the inclusion of dust associated with the intermediate velocity Hi. Finally, we explore the morphological parameter space in the Hi-based filamentary model.

     
    more » « less
  3. ABSTRACT

    Over ∼150 resolved, kpc-scale X-ray jets hosted by active galactic nuclei have been discovered with the Chandra X-ray Observatory. A significant fraction of these jets have an X-ray spectrum either too high in flux or too hard to be consistent with the high-energy extension of the radio-to-optical synchrotron spectrum, a subtype we identify as Multiple Spectral Component (MSC) X-ray jets. A leading hypothesis for the origin of the X-rays is the inverse-Compton scattering of the cosmic microwave background by the same electron population producing the radio-to-optical synchrotron spectrum (known as the IC/CMB model). In this work, we test the IC/CMB model in 45 extragalactic X-ray jets using observations from the Fermi Large Area Telescope to look for the expected high level of gamma-ray emission, utilizing observations from the Atacama Large Millimeter/submillimeter Array (ALMA) and the Hubble Space Telescope (HST) when possible to best constrain the predicted gamma-ray flux. Including this and previous works, we now find the IC/CMB model to be ruled out in a total of 24/45 MSC X-ray jets due to its over-prediction for the observed MeV-to-GeV gamma-ray flux. We present additional evidence against the IC/CMB model, including the relative X-ray-to-radio relativistic beaming in these sources, and the general mismatch between radio and X-ray spectral indexes. Finally, we present upper limits on the large-scale bulk-flow Lorentz factors for all jets based on the Fermi upper limits, which suggest that these jets are at most mildly relativistic.

     
    more » « less
  4. Abstract

    The Universe is filled with a diffuse background of MeV gamma-rays and PeV neutrinos, whose origins are unknown. Here, we propose a scenario that can account for both backgrounds simultaneously. Low-luminosity active galactic nuclei have hot accretion flows where thermal electrons naturally emit soft gamma rays via Comptonization of their synchrotron photons. Protons there can be accelerated via turbulence or reconnection, producing high-energy neutrinos via hadronic interactions. We demonstrate that our model can reproduce the gamma-ray and neutrino data. Combined with a contribution by hot coronae in luminous active galactic nuclei, these accretion flows can explain the keV – MeV photon and TeV – PeV neutrino backgrounds. This scenario can account for the MeV background without non-thermal electrons, suggesting a higher transition energy from the thermal to nonthermal Universe than expected. Our model is consistent with X-ray data of nearby objects, and testable by future MeV gamma-ray and high-energy neutrino detectors.

     
    more » « less
  5. Abstract

    Hypernebulae are inflated by accretion-powered winds accompanying hyper-Eddington mass transfer from an evolved post-main-sequence star onto a black hole or neutron star companion. The ions accelerated at the termination shock—where the collimated fast disk winds and/or jet collide with the slower, wide-angled wind-fed shell—can generate high-energy neutrinos via hadronic proton–proton reactions, and photohadronic (pγ) interactions with the disk thermal and Comptonized nonthermal background photons. It has been suggested that some fast radio bursts (FRBs) may be powered by such short-lived jetted hyper-accreting engines. Although neutrino emission associated with the millisecond duration bursts themselves is challenging to detect, the persistent radio counterparts of some FRB sources—if associated with hypernebulae—could contribute to the high-energy neutrino diffuse background flux. If the hypernebula birth rate follows that of stellar-merger transients and common envelope events, we find that their volume-integrated neutrino emission—depending on the population-averaged mass-transfer rates—could explain up to ∼25% of the high-energy diffuse neutrino flux observed by the IceCube Observatory and the Baikal Gigaton Volume Detector Telescope. The time-averaged neutrino spectrum from hypernebula—depending on the population parameters—can also reproduce the observed diffuse neutrino spectrum. The neutrino emission could in some cases furthermore extend to >100 PeV, detectable by future ultra-high-energy neutrino observatories. The large optical depth through the nebula to Breit–Wheeler (γγ) interaction attenuates the escape of GeV–PeV gamma rays coproduced with the neutrinos, rendering these gamma-ray-faint neutrino sources, consistent with the Fermi observations of the isotropic gamma-ray background.

     
    more » « less