This study explores the experiences of two teachers participating in professional development workshops focused on supporting implementation of SocioScientific Issues (SSI) and aspects of social justice into STEM classrooms. SSI are ill-defined problems, with a basis in science, but necessarily include moral and ethical decisions that cannot be resolved through science alone. These debatable issues can enhance learning of STEM by engaging students in real-world and authentic problems. The USTRIVE project was developed to foster STEM learning through integrated professional development workshops and the development of professional learning communities to support teachers in the use of SSI and incorporation of aspects of social justice in their STEM classrooms. Two research questions were investigated: (a) To what extent did teachers implement SSI into their lesson planning during the project and (b) In what ways did teachers’ designed lessons change from the beginning of the workshop? 
                        more » 
                        « less   
                    
                            
                            We Strive: Initial Explorations of STEM Teachers’ Successes and Challenges in Implementing Socioscientific Issues.
                        
                    
    
            This study explores the experiences of two teachers participating in professional development workshops focused on supporting implementation of SocioScientific Issues (SSI) and aspects of social justice into STEM classrooms. SSI are ill-defined problems, with a basis in science, but necessarily include moral and ethical decisions that cannot be resolved through science alone. These debatable issues can enhance learning of STEM by engaging students in real-world and authentic problems. The USTRIVE project was developed to foster STEM learning through integrated professional development workshops and the development of professional learning communities to support teachers in the use of SSI and incorporation of aspects of social justice in their STEM classrooms. Two research questions were investigated: (a) To what extent did teachers implement SSI into their lesson planning during the project and (b) In what ways did teachers’ designed lessons change from the beginning of the workshop? 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2101395
- PAR ID:
- 10403752
- Date Published:
- Journal Name:
- Pennsylvania teacher educator
- Volume:
- 21
- Issue:
- 2
- ISSN:
- 1547-1047
- Page Range / eLocation ID:
- 4158
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Socioscientific issues (SSI) are problems involving the deliberate use of scientific topics that require students to engage in dialogue, discussion, and debate. The purpose of this project is to utilize issues that are personally meaningful and engaging to students, require the use of evidence-based reasoning, and provide a context for scientific information. Social justice is the pursuit of equity and fairness in society by ensuring that all individuals have opportunities to challenge and address inequalities and injustices to create a more just and equitable society for all (Killen et al. Human Development 65:257–269, 2021). By connecting science, technology, engineering, and mathematics (STEM) concepts to personally meaningful contexts, SSI can empower students to consider how STEM-based issues reflect moral principles and elements of virtue in their own lives and the world around them (Zeidler et al. Science Education 89:357–377, 2005). We employed a qualitative research design to answer the following questions: (1) In what ways, if any, did teachers help students grow their knowledge and practices on social justice through socioscientific issues? (2) In teachers’ perceptions, what components of SSI did students learn and what are their challenges? (3) In teachers’ perceptions, what are students’ stances on social justice? After completing the first year and second-year professional development programs, grades 6–12 STEM teachers were asked to complete a reflection on classroom artifacts. Teachers were asked to select student artifacts (e.g. assignments, projects, essays, videos, etc.) that they thought exemplified the students’ learning of SSI and stance on social justice. Based on 21 teacher-submitted examples of exemplar student work, we saw the following example pedagogies to engage their students on social justice: (a) making connections to real-world experiences, (b) developing a community project, (c) examining social injustice, and (d) developing an agency to influence/make changes. According to teachers, the most challenging SSI for students was elucidating their own position/solution, closely followed by employing reflective scientific skepticism. Moreover, the students exemplified reflexivity, metacognition, authentic activity, and dialogic conversation. Using SSI in classrooms allows students to tackle real-world problems, blending science and societal concerns. This approach boosts understanding of scientific concepts and their relevance to society. Identifying methods like real-world connections and examining social injustice helps integrate social justice themes into science education through SSI. Overall, SSI promotes interdisciplinary learning, critical thinking, and informed decision-making, enriching science education socially. This study highlights the value of integrating SSI in science education to engage students with social justice.more » « less
- 
            This study reports the findings of a two-year intensive professional development (PD) program situated in the northeastern United States for secondary mathematics and science teachers to support them in transforming their STEM instruction to incorporate SocioScientific Issues (SSI). This PD focused on developing units of study that integrated student-centered, authentic learning experiences grounded in social justice issues. Findings indicate that after participation in the USTRIVE project, teachers displayed growth in their ability to incorporate components of the instructional framework for SSI introduced in the PD into their teaching. This is consistent with previous research that SSI-focused PD can increase teachers’ knowledge of, and teaching practices toward SSI, resulting in more meaningful STEM learning experiences for students. As such, the USTRIVE PD model and framework may provide a useful guide for other SSI and social justice PD programs. Connections of these findings to student engagement, teachers learning, and challenges encountered in SSI implementation are explored.more » « less
- 
            null (Ed.)This case study addresses the pedagogical challenges teachers face in incorporating elements of socioscientific issues (SSI) when planning science and mathematics lessons. In order to effectively plan and teach SSI lessons, teachers must develop pedagogical content knowledge (PCK) specific to unpacking elements of SSI such as identifying an issue that is debatable and relevant to students’ lives, employing reflective scientific skepticism, and evaluating multiple perspectives. This study was guided by the following research questions: 1) In what ways, if any, did teachers’ knowledge and instructional design of SSI change throughout the intensive series of workshops? 2) What areas of SSI required additional support? To answer our research questions, we analyzed changes in lesson plans from 29 teachers, mostly science and secondary, over the course of three intensive workshops as part of the Integrating STEM in Everyday Life Conference Series. Over the five month period, teachers worked in groups and with mentors to design and implement SSI lessons. Our findings show that teachers demonstrated positive changes in all SSI elements over the course of the workshops. However, deeper analysis reveals that teachers struggled to balance the social and scientific aspects of SSI. Moreover, our analysis suggests that teachers did not focus on the discursive nature of SSI in their lesson plans. Implications of our study include ways in which professional development programs can cultivate teachers’ PCK of SSI in order to better support them in planning and implementing SSI lessons.more » « less
- 
            Integrated STEM approaches in K-12 science and math instruction can be more engaging and meaningful for students and often meet the curriculum content and practice goals better than single-subject lessons. Engineering, as a key component of STEM education, offers hands-on, designed-based, problem solving activities to drive student interest and confidence in STEM overall. However, K-12 STEM teachers may not feel equipped to implement engineering practices and may even experience anxiety about trying them out in their classrooms without the added support of professional development and professional learning communities. To address these concerns and support engineering integration, this research study examined the experiences of 18 teachers in one professional development program dedicated to STEM integration and engineering pedagogy for K-12 classrooms. This professional development program positioned the importance of the inclusion of engineering content and encouraged teachers to explore community-based, collaborative activities that identified and spoke to societal needs and social impacts through engineering integration. Data collected from two of the courses in this project, Enhancing Mathematics with STEM and Engineering in the K-12 Classroom, included participant reflections, focus groups, microteaching lesson plans, and field notes. Through a case study approach and grounded theory analysis, themes of self-efficacy, active learning supports, and social justice teaching emerged. The following discussion on teachers’ engineering and STEM self-efficacy, teachers’ integration of engineering to address societal needs and social impacts, and teachers’ development in engineering education through hands-on activities, provides better understanding of engineering education professional development for K-12 STEM teachers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    