We introduce a flexible marginal modelling approach for statistical inference for clustered and longitudinal data under minimal assumptions. This estimated estimating equations approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed effects linear predictor with unknown smooth link, and variance–covariance is an unknown smooth function of the marginal means. We propose to estimate the nonparametric link and variance–covariance functions via smoothing methods, whereas the regression parameters are obtained via the estimated estimating equations. These are score equations that contain nonparametric function estimates. The proposed estimated estimating equations approach is motivated by its flexibility and easy implementation. Moreover, if data follow a generalized linear mixed model, with either a specified or an unspecified distribution of random effects and link function, the model proposed emerges as the corresponding marginal (population-average) version and can be used to obtain inference for the fixed effects in the underlying generalized linear mixed model, without the need to specify any other components of this generalized linear mixed model. Among marginal models, the estimated estimating equations approach provides a flexible alternative to modelling with generalized estimating equations. Applications of estimated estimating equations include diagnostics and link selection. The asymptotic distribution of the proposed estimators for the model parameters is derived, enabling statistical inference. Practical illustrations include Poisson modelling of repeated epileptic seizure counts and simulations for clustered binomial responses.
We propose a class of semiparametric functional regression models to describe the influence of vector-valued covariates on a sample of response curves. Each observed curve is viewed as the realization of a random process, composed of an overall mean function and random components. The finite dimensional covariates influence the random components of the eigenfunction expansion through single-index models that include unknown smooth link and variance functions. The parametric components of the single-index models are estimated via quasi-score estimating equations with link and variance functions being estimated nonparametrically. We obtain several basic asymptotic results. The functional regression models proposed are illustrated with the analysis of a data set consisting of egg laying curves for 1000 female Mediterranean fruit-flies (medflies).
more » « less- PAR ID:
- 10403886
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of the Royal Statistical Society Series B: Statistical Methodology
- Volume:
- 65
- Issue:
- 2
- ISSN:
- 1369-7412
- Format(s):
- Medium: X Size: p. 405-423
- Size(s):
- p. 405-423
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary -
Abstract The nonlinear responses of species to environmental variability can play an important role in the maintenance of ecological diversity. Nonetheless, many models use parametric nonlinear terms which pre‐determine the ecological conclusions. Motivated by this concern, we study the estimate of the second derivative (curvature) of the link function in a functional single index model. Since the coefficient function and the link function are both unknown, the estimate is expressed as a nested optimization. We first estimate the coefficient function by minimizing squared error where the link function is estimated with a Nadaraya‐Watson estimator for each candidate coefficient function. The first and second derivatives of the link function are then estimated via local‐quadratic regression using the estimated coefficient function. In this paper, we derive a convergence rate for the curvature of the nonlinear response. In addition, we prove that the argument of the linear predictor can be estimated root‐
n consistently. However, practical implementation of the method requires solving a nonlinear optimization problem, and our results show that the estimates of the link function and the coefficient function are quite sensitive to the choices of starting values. -
Functional data contains two components: shape (or amplitude) and phase. This paper focuses on a branch of functional data analysis (FDA), namely Shape-Based FDA, that isolates and focuses on shapes of functions. Specifically, this paper focuses on Scalar-on-Shape (ScoSh) regression models that incorporate the shapes of predictor functions and discard their phases. This aspect sets ScoSh models apart from the traditional Scalar-on-Function (ScoF) regression models that incorporate full predictor functions. ScoSh is motivated by object data analysis, {\it, e.g.}, for neuro-anatomical objects, where object morphologies are relevant and their parameterizations are arbitrary. ScoSh also differs from methods that arbitrarily pre-register data and uses it in subsequent analysis. In contrast, ScoSh models perform registration during regression, using the (non-parametric) Fisher-Rao inner product and nonlinear index functions to capture complex predictor-response relationships. This formulation results in novel concepts of {\it regression phase} and {\it regression mean} of functions. Regression phases are time-warpings of predictor functions that optimize prediction errors, and regression means are optimal regression coefficients. We demonstrate practical applications of the ScoSh model using extensive simulated and real-data examples, including predicting COVID outcomes when daily rate curves are predictors.more » « less
-
Summary The paper is concerned with testing normality in samples of curves and error curves estimated from functional regression models. We propose a general paradigm based on the application of multivariate normality tests to vectors of functional principal components scores. We examine finite sample performance of a number of such tests and select the best performing tests. We apply them to several extensively used functional data sets and determine which can be treated as normal, possibly after a suitable transformation. We also offer practical guidance on software implementations of all tests we study and develop large sample justification for tests based on sample skewness and kurtosis of functional principal component scores.
-
Summary Recently, massive functional data have been widely collected over space across a set of grid points in various imaging studies. It is interesting to correlate functional data with various clinical variables, such as age and gender, in order to address scientific questions of interest. The aim of this article is to develop a single-index varying coefficient (SIVC) model for establishing a varying association between functional responses (e.g., image) and a set of covariates. It enjoys several unique features of both varying-coefficient and single-index models. An estimation procedure is developed to estimate varying coefficient functions, the index function, and the covariance function of individual functions. The optimal integration of information across different grid points is systematically delineated and the asymptotic properties (e.g., consistency and convergence rate) of all estimators are examined. Simulation studies are conducted to assess the finite-sample performance of the proposed estimation procedure. Furthermore, our real data analysis of a white matter tract dataset obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study confirms the advantage and accuracy of SIVC model over the popular varying coefficient model.