This content will become publicly available on January 1, 2024
- Publication Date:
- NSF-PAR ID:
- 10403997
- Journal Name:
- Applied Sciences
- Volume:
- 13
- Issue:
- 2
- Page Range or eLocation-ID:
- 889
- ISSN:
- 2076-3417
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Background To compare the performance (as determined by lower extremity kinematics) of knee exercises in healthy middle-aged and older individuals immediately after instruction and one week later. Methods This is a cross-sectional study in a laboratory setting. Nineteen healthy volunteers (age [y] 63.1 ± 8.6, mass [kg] 76.3 ± 14.7, height [m] 1.7 ± 0.1) participated in this study. High speed video and reflective markers were used to track motion during four exercises. The exercises were knee flexion, straight leg raise, and “V “in supine position, and hip abduction in side lying position. All participants received verbal and tactile cues during the training phase and the therapist observed and, if necessary, corrected the exercises. Upon return a week later the participants performed the same exercises without any further instructions. Knee and hip sagittal and rotational angles were extracted from the motion capture. A repeated measures t-test was used to compare the motions between two visits. Results Participants demonstrated more knee flexion during straight leg raise and “V in” exercises at the 2nd visit compared to the 1st visit (both p < 0.05). During the “V out” exercise, they performed more external rotation ( p < 0.05) while they showed more internal rotation during the “V in” exercisemore »
-
Many control methods have been proposed for powered prosthetic legs, ranging from finite state machines that switch between discrete phases of gait to unified controllers that have a continuous sense of phase. In particular, recent work has shown that a mechanical phase variable can parameterize the entire gait cycle for controlling a prosthetic leg during steady rhythmic locomotion. However, the unified approach does not provide voluntary control over non-rhythmic motions like stepping forward and back. In this paper we present a phasing algorithm that uses the amputee’s hip angle to control both rhythmic and non-rhythmic motion through two modes: 1) a piecewise (PW) function that provides users voluntary control over stance and swing in a piecewise manner, and 2) a unified function that continuously synchronizes the motion of the prosthetic leg with the amputee user at different walking speeds. The two phase variable approaches are compared in experiments with a powered knee-ankle prosthesis used by an above-knee amputee subject.
-
Background: Thigh muscle weakness after anterior cruciate ligament reconstruction (ACLR) can persist after returning to activity. While resistance training can improve muscle function, “nonfunctional” training methods are not optimal for inducing transfer of benefits to activities such as walking. Here, we tested the feasibility of a novel functional resistance training (FRT) approach to restore strength and function in an individual with ACLR.
Hypothesis: FRT would improve knee strength and function after ACLR.
Study Design: Case report.
Level of Evidence: Level 5.
Methods: A 15-year-old male patient volunteered for an 8-week intervention where he performed 30 minutes of treadmill walking, 3 times per week, while wearing a custom-designed knee brace that provided resistance to the thigh muscles of his ACLR leg. Thigh strength, gait mechanics, and corticospinal and spinal excitability were assessed before and immediately after the 8-week intervention. Voluntary muscle activation was evaluated immediately after the intervention.
Results: Knee extensor and flexor strength increased in the ACLR leg from pre- to posttraining (130 to 225 N·m [+74%] and 44 to 88 N·m [+99%], respectively) and increases in between-limb extensor and flexor strength symmetry (45% to 92% [+74%] and 47% to 72% [+65%], respectively) were also noted. After the intervention, voluntary muscle activation in the ACLR legmore »
Conclusion: A full 8 weeks of FRT that targeted both quadriceps and hamstring muscles lead to improvements in strength and gait, suggesting that FRT may constitute a promising and practical alternative to traditional methods of resistance training.
Clinical Relevance: FRT may serve as a viable approach to improve knee strength and function after ACL reconstruction.
-
Reaching movements performed from a crouched body posture require a shift of body weight from both arms to one arm. This situation has remained unexamined despite the analogous load requirements during step initiation and the many studies of reaching from a seated or standing posture. To determine whether the body weight shift involves anticipatory or exclusively reactive control, we obtained force plate records, hand kinematics, and arm muscle activity from 11 healthy right-handed participants. They performed reaching movements with their left and right arm in two speed contexts, “comfortable” and “as fast as possible,” and two postural contexts, a less stable knees-together posture and a more stable knees-apart posture. Weight-shifts involved anticipatory postural actions (APAs) by the reaching and stance arms that were opposing in the vertical axis and aligned in the side-to-side axis similar to APAs by the legs for step initiation. Weight-shift APAs were correlated in time and magnitude, present in both speed contexts, more vigorous with the knees placed together, and similar when reaching with the dominant and nondominant arm. The initial weight-shift was preceded by bursts of muscle activity in the shoulder and elbow extensors (posterior deltoid and triceps lateral) of the reach arm and shouldermore »
-
Although there has been recent progress in control of multi-joint prosthetic legs for rhythmic tasks such as walking, control of these systems for non-rhythmic motions and general real-world maneuvers is still an open problem. In this article, we develop a new controller that is capable of both rhythmic (constant-speed) walking, transitions between speeds and/or tasks, and some common volitional leg motions. We introduce a new piecewise holonomic phase variable, which, through a finite state machine, forms the basis of our controller. The phase variable is constructed by measuring the thigh angle, and the transitions in the finite state machine are formulated through sensing foot contact along with attributes of a nominal reference gait trajectory. The controller was implemented on a powered knee-ankle prosthesis and tested with a transfemoral amputee subject, who successfully performed a wide range of rhythmic and non-rhythmic tasks, including slow and fast walking, quick start and stop, backward walking, walking over obstacles, and kicking a soccer ball. Use of the powered leg resulted in clinically significant reductions in amputee compensations for rhythmic tasks (including vaulting and hip circumduction) when compared to use of the take-home passive leg. In addition, considerable improvements were also observed in the performancemore »