Abstract Mate choice requires navigating an exploration-exploitation trade-off. Successful mate choice requires choosing partners who have preferred qualities; but time spent determining one partner’s qualities could have been spent exploring for potentially superior alternatives. Here I argue that this dilemma can be modeled in a reinforcement learning framework as a multi-armed bandit problem. Moreover, using agent-based models and a sample of k = 522 real-world romantic dyads, I show that a reciprocity-weighted Thompson sampling algorithm performs well both in guiding mate search in noisy search environments and in reproducing the mate choices of real-world participants. These results provide a formal model of the understudied psychology of human mate search. They additionally offer implications for our understanding of person perception and mate choice.
more »
« less
A Formal Framework for Knowledge Acquisition: Going beyond Machine Learning
Philosophers frequently define knowledge as justified, true belief. We built a mathematical framework that makes it possible to define learning (increasing number of true beliefs) and knowledge of an agent in precise ways, by phrasing belief in terms of epistemic probabilities, defined from Bayes’ rule. The degree of true belief is quantified by means of active information I+: a comparison between the degree of belief of the agent and a completely ignorant person. Learning has occurred when either the agent’s strength of belief in a true proposition has increased in comparison with the ignorant person (I+>0), or the strength of belief in a false proposition has decreased (I+<0). Knowledge additionally requires that learning occurs for the right reason, and in this context we introduce a framework of parallel worlds that correspond to parameters of a statistical model. This makes it possible to interpret learning as a hypothesis test for such a model, whereas knowledge acquisition additionally requires estimation of a true world parameter. Our framework of learning and knowledge acquisition is a hybrid between frequentism and Bayesianism. It can be generalized to a sequential setting, where information and data are updated over time. The theory is illustrated using examples of coin tossing, historical and future events, replication of studies, and causal inference. It can also be used to pinpoint shortcomings of machine learning, where typically learning rather than knowledge acquisition is in focus.
more »
« less
- Award ID(s):
- 2137148
- PAR ID:
- 10404053
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 24
- Issue:
- 10
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 1469
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present an approach to analyse learning outcomes in a broad class of misspecified environments, spanning both single-agent and social learning. We introduce a novel “prediction accuracy” order over subjective models and observe that this makes it possible to partially restore standard martingale convergence arguments that apply under correctly specified learning. Based on this, we derive general conditions to determine when beliefs in a given environment converge to some long-run belief either locally or globally (i.e. from some or all initial beliefs). We show that these conditions can be applied, first, to unify and generalize various convergence results in previously studied settings. Second, they enable us to analyse environments where learning is “slow”, such as costly information acquisition and sequential social learning. In such environments, we illustrate that even if agents learn the truth when they are correctly specified, vanishingly small amounts of misspecification can generate extreme failures of learning.more » « less
-
Abstract To be responsive to dynamically changing real-world environments, an intelligent agent needs to perform complex sequential decision-making tasks that are often guided by commonsense knowledge. The previous work on this line of research led to the framework called interleaved commonsense reasoning and probabilistic planning (i corpp ), which used P-log for representing commmonsense knowledge and Markov Decision Processes (MDPs) or Partially Observable MDPs (POMDPs) for planning under uncertainty. A main limitation of i corpp is that its implementation requires non-trivial engineering efforts to bridge the commonsense reasoning and probabilistic planning formalisms. In this paper, we present a unified framework to integrate i corpp ’s reasoning and planning components. In particular, we extend probabilistic action language pBC + to express utility, belief states, and observation as in POMDP models. Inheriting the advantages of action languages, the new action language provides an elaboration tolerant representation of POMDP that reflects commonsense knowledge. The idea led to the design of the system pbcplus2pomdp , which compiles a pBC + action description into a POMDP model that can be directly processed by off-the-shelf POMDP solvers to compute an optimal policy of the pBC + action description. Our experiments show that it retains the advantages of i corpp while avoiding the manual efforts in bridging the commonsense reasoner and the probabilistic planner.more » « less
-
An agent has access to multiple information sources, each modeled as a Brownian motion whose drift provides information about a different component of an unknown Gaussian state. Information is acquired continuously—where the agent chooses both which sources to sample from, and also how to allocate attention across them—until an endogenously chosen time, at which point a decision is taken. We demonstrate conditions on the agent's prior belief under which it is possible to exactly characterize the optimal information acquisition strategy. We then apply this characterization to derive new results regarding: (1) endogenous information acquisition for binary choice, (2) the dynamic consequences of attention manipulation, and (3) strategic information provision by biased news sources.more » « less
-
Recent years have seen a surge in research on why people fall for misinformation and what can be done about it. Drawing on a framework that conceptualizes truth judgments of true and false information as a signal-detection problem, the current article identifies three inaccurate assumptions in the public and scientific discourse about misinformation: (1) People are bad at discerning true from false information, (2) partisan bias is not a driving force in judgments of misinformation, and (3) gullibility to false information is the main factor underlying inaccurate beliefs. Counter to these assumptions, we argue that (1) people are quite good at discerning true from false information, (2) partisan bias in responses to true and false information is pervasive and strong, and (3) skepticism against belief-incongruent true information is much more pronounced than gullibility to belief-congruent false information. These conclusions have significant implications for person-centered misinformation interventions to tackle inaccurate beliefs.more » « less
An official website of the United States government

