skip to main content


Title: An FRB Sent Me a DM: Constraining the Electron Column of the Milky Way Halo with Fast Radio Burst Dispersion Measures from CHIME/FRB
Abstract

The CHIME/FRB project has detected hundreds of fast radio bursts (FRBs), providing an unparalleled population to statistically probe the foreground media that they illuminate. One such foreground medium is the ionized halo of the Milky Way (MW). We estimate the total Galactic electron column density from FRB dispersion measures (DMs) as a function of Galactic latitude using four different estimators, including ones that assume spherical symmetry of the ionized MW halo and ones that imply more latitudinal variation in density. Our observation-based constraints of the total Galactic DM contribution for ∣b∣ ≥ 30°, depending on the Galactic latitude and selected model, span 87.8–141 pc cm−3. This constraint implies upper limits on the MW halo DM contribution that range over 52–111 pc cm−3. We discuss the viability of various gas density profiles for the MW halo that have been used to estimate the halo’s contribution to DMs of extragalactic sources. Several models overestimate the DM contribution, especially when assuming higher halo gas masses (∼3.5 × 1012M). Some halo models predict a higher MW halo DM contribution than can be supported by our observations unless the effect of feedback is increased within them, highlighting the impact of feedback processes in galaxy formation.

 
more » « less
NSF-PAR ID:
10404135
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
946
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 58
Size(s):
["Article No. 58"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The repeating fast radio burst FRB 20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM = 1205 pc cm−3) despite its low redshift ofzfrb= 0.241. This excess has been attributed to a large host contribution of DMhost≈ 900 pc cm−3, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB 20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separateMhalo> 1014Mgalaxy clusters atz= 0.1867 and 0.2170 that are directly intersected by the FRB sight line within their characteristic halo radiusr200. Subtracting off their estimated DM contributions, as well that of the diffuse intergalactic medium, we estimate a host contribution ofDMhost=430220+140or280170+140pccm3(observed frame), depending on whether we assume that the halo gas extends tor200or 2 ×r200. This significantly smaller DMhost—no longer the largest known value—is now consistent with Hαemission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to beF˜G4.511(pc2km)1/3, suggesting that most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses both for understanding the nature of FRBs and to realize their potential as a cosmological probe.

     
    more » « less
  2. Abstract

    A sample of 14 FRBs with measured redshifts and scattering times is used to assess contributions to dispersion and scattering from the intergalactic medium (IGM), galaxy halos, and the disks of host galaxies. The IGM and galaxy halos contribute significantly to dispersion measures (DMs) but evidently not to scattering, which is then dominated by host galaxies. This enables the usage of scattering times for estimating DM contributions from host galaxies and also for a combined scattering–dispersion redshift estimator. Redshift estimation is calibrated using the scattering of Galactic pulsars after taking into account different scattering geometries for Galactic and intergalactic lines of sight. The DM-only estimator has a bias of ∼0.1 and rms error of ∼0.15 in the redshift estimate for an assumed ad hoc value of 50 pc cm−3for the host galaxy’s DM contribution. The combined redshift estimator shows less bias by a factor of 4 to 10 and a 20%–40% smaller rms error. We find that values for the baryonic fraction of the ionized IGMfigm≃ 0.85 ± 0.05 optimize redshift estimation using dispersion and scattering. Our study suggests that 2 of the 14 candidate galaxy associations (FRB 20190523A and FRB 20190611B) should be reconsidered.

     
    more » « less
  3. Abstract

    Fast radio bursts (FRBs) are brief, energetic, typically extragalactic flashes of radio emission whose progenitors are largely unknown. Although studying the FRB population is essential for understanding how these astrophysical phenomena occur, such studies have been difficult to conduct without large numbers of FRBs and characterizable observational biases. Using the recently released catalog of 536 FRBs published by the Canadian Hydrogen Intensity Mapping Experiment/Fast Radio Burst (CHIME/FRB) collaboration, we present a study of the FRB population that also calibrates for selection effects. Assuming a Schechter function, we infer a characteristic energy cut-off ofEchar=2.381.64+5.35×1041erg and a differential power-law index ofγ=1.30.4+0.7. Simultaneously, we infer a volumetric rate of [7.33.8+8.8(stat.)1.8+2.0(sys.)]×104Gpc−3yr−1above a pivot energy of 1039erg and below a scattering timescale of 10 ms at 600 MHz, and find we cannot significantly constrain the cosmic evolution of the FRB population with star-formation rate. Modeling the host’s dispersion measure (DM) contribution as a log-normal distribution and assuming a total Galactic contribution of 80 pc cm−3, we find a median value ofDMhost=8449+69pc cm−3, comparable with values typically used in the literature. Proposed models for FRB progenitors should be consistent with the energetics and abundances of the full FRB population predicted by our results. Finally, we infer the redshift distribution of FRBs detected with CHIME, which will be tested with the localizations and redshifts enabled by the upcoming CHIME/FRB Outriggers project.

     
    more » « less
  4. Abstract

    We present results from angular cross correlations between select samples of CHIME/FRB repeaters and galaxies in three photometric galaxy surveys, which have shown correlations with the first CHIME/FRB catalog containing repeating and nonrepeating sources: Wide-field Infrared Survey Explorer (WISE) × SCOS, DESI-BGS, and DESI-LRG. We find a statistically significant correlation (p-value <0.001, after accounting for look-elsewhere factors) between a sample of repeaters with an extragalactic dispersion measure (DM) > 395 pc cm−3and WISE × SCOS galaxies with redshiftz> 0.275. We demonstrate that the correlation arises surprisingly because of a statistical association between FRB 20200320A (extragalactic DM ≈ 550 pc cm−3) and a galaxy group in the same dark matter halo at redshiftz≈ 0.32. We estimate that the host halo, along with an intervening halo at redshiftz≈ 0.12, accounts for at least ∼30% of the extragalactic DM. Our results strongly motivate incorporating galaxy group and cluster catalogs into direct host association pipelines for FRBs with1localization precision, effectively utilizing the two-point information to constrain FRB properties such as their redshift and DM distributions. In addition, we find marginal evidence for a negative correlation at 99.4% confidence limit between a sample of repeating FRBs with baseband data (median extragalactic DM = 354 pc cm−3) and DESI-LRG galaxies with redshift 0.3 ≤z< 0.45, suggesting that the repeaters might be more prone than apparent nonrepeaters to propagation effects in FRB–galaxy correlations due to intervening free electrons over angular scales ∼0.°5.

     
    more » « less
  5. Abstract We present a high-resolution analysis of the host galaxy of fast radio burst (FRB) 190608, an SB(r)c galaxy at z = 0.11778 (hereafter HG 190608), to dissect its local environment and its contributions to the FRB properties. Our Hubble Space Telescope Wide Field Camera 3 ultraviolet and visible light image reveals that the subarcsecond localization of FRB 190608 is coincident with a knot of star formation (Σ SFR = 1.5 × 10 −2 M ⊙ yr −1 kpc −2 ) in the northwest spiral arm of HG 190608. Using H β emission present in our Keck Cosmic Web Imager integral field spectrum of the galaxy with a surface brightness of μ H β = ( 3.36 ± 0.21 ) × 10 − 17 erg s − 1 cm − 2 arcsec − 2 , we infer an extinction-corrected H α surface brightness and compute a dispersion measure (DM) from the interstellar medium of HG 190608 of DM Host,ISM = 94 ± 38 pc cm −3 . The galaxy rotates with a circular velocity v circ = 141 ± 8 km s −1 at an inclination i gas = 37° ± 3°, giving a dynamical mass M halo dyn ≈ 10 11.96 ± 0.08 M ⊙ . This implies a halo contribution to the DM of DM Host,Halo = 55 ± 25 pc cm −3 subject to assumptions on the density profile and fraction of baryons retained. From the galaxy rotation curve, we infer a bar-induced pattern speed of Ω p = 34 ± 6 km s −1 kpc −1 using linear resonance theory. We then calculate the maximum time since star formation for a progenitor using the furthest distance to the arm’s leading edge within the localization, and find t enc = 21 − 6 + 25 Myr. Unlike previous high-resolution studies of FRB environments, we find no evidence of disturbed morphology, emission, or kinematics for FRB 190608. 
    more » « less