skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Role for Crustal Assimilation in the Formation of Copper-Rich Reservoirs at the Base of Continental Arcs
Abstract Understanding the behavior of chalcophile elements during the evolution of arc magmas is critical to refining models for the formation and distribution of porphyry copper deposits used in mineral exploration. Because magmas in continental arcs undergo copper depletion during their early differentiation, a widely held hypothesis posits that the removed copper is locked at the base of the crust in copper-rich cumulates that form due to early sulfide saturation. Testing this hypothesis requires direct evidence for such copper-rich reservoirs and a comprehensive understanding of the mechanisms driving sulfide saturation. Interaction between oxidized magmas and reducing crustal material in island arcs has been shown to be an efficient process causing sulfide saturation. However, the extent to which crustal assimilation impacts the flux of chalcophile elements during magmatism in thick continental arcs remains to be established. Here, we provide a deep perspective into these problems by studying a suite of subarc cumulate rocks from the Acadian orogen, New England (USA). These cumulates record the imprint of subduction zone magmatism and represent the residues left behind during the genesis of intermediate to evolved Acadian magmas (ca. 410 Ma). We find that the most primitive Acadian cumulates are enriched in copper (up to ~730 µg g–1) hosted by sulfide phases, providing direct evidence for the formation of lower crustal copper-rich reservoirs. The Acadian cumulates reveal a wide range of δ34S values, from –4.9‰ in the ultramafic rocks to 8‰ in the most evolved mafic rocks. The negative δ34S values observed in the most primitive and copper-rich cumulates (avg –3‰) reflect the assimilation of isotopically light sulfur from surrounding sulfidic and graphite-bearing metasedimentary rocks (δ34S of –19 to –12‰), whereas the more evolved cumulates with positive δ34S signatures may have formed from different magma batches that experienced less sediment assimilation. The assimilation of these reducing metasedimentary rocks caused a critical drop in oxygen fugacity (~DFMQ –2.5 to –1.9; FMQ = fayalite-quartz-magnetite buffer) in the evolving magmas, ultimately leading to extensive sulfide saturation and the consequent formation of copper-rich subarc cumulates. Assimilation-driven sulfide saturation may be a common process at the root of thickened arc crusts that triggers the formation of lower crustal copper-rich reservoirs, which play a pivotal role in the fate of copper during arc magmatism. Thus, deeply buried reducing metasedimentary crustal material at the base of continental arcs can act as a barrier to the magmatic flux of chalcophile elements and may play a crucial role in the genesis and distribution of porphyry copper deposits.  more » « less
Award ID(s):
1753553 1250269 0744154
PAR ID:
10404152
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Economic Geology
Volume:
117
Issue:
7
ISSN:
0361-0128
Page Range / eLocation ID:
1481 to 1496
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The dearth of cumulate magmatic roots in accretionary orogens is a cornerstone of models that postulate redistribution of mass and energy within the crust for the genesis of intermediate to silicic magmatism. Likewise, the origin of the evolved Acadian (Devonian) plutonism in the New England Appalachians (northeastern USA) has long been explained by closed-system crustal melting due to the absence of associated coeval deep mafic counterparts. Here, we report the discovery of Acadian hydrous ultramafic cumulate rocks that formed by deep-seated (∼1.1 GPa) fractional crystallization processes from a mantle-derived parental melt (Connecticut, southern New England, USA). These rocks are the first of their kind identified in the Appalachian orogen, and one of only a handful of preserved deep subarc hydrous cumulates worldwide. We propose a genetic link between the studied rocks and the evolved coeval plutonism in central-southern New England, where the former represent the missing deep cumulate roots of the same magmatic arc. Our findings support the hypothesis that differentiation of mantle-derived hydrous magmas by fractional crystallization and assimilation processes in the deep crust is a fundamental process in the production of intermediate to silicic magmatism and the geochemical evolution of the continental crust. 
    more » « less
  2. The sulfur isotope composition of volcanic rocks in arcs can be difficult to constrain because significant fractionation can occur during degassing. Mafic and ultramafic cumulates represent the least degassed part of the magmatic arc system, thereby offering an opportunity to investigate undegassed sulfur in arcs. Recent work on high pressure metamorphic rocks has suggested that subducted materials can retain their original isotopic composition to sub-arc depths. In particular, extreme negative δ34S values can be retained in subducted sediments. The purpose of this project is to investigate to what extent these deep subduction zone processes are reflected in the sulfur isotope signature of arc magmas. In the Lesser Antilles arc, there is a gradual decrease in terrigenous sediment being subducted from south to north. An estimated ~15% subducted sediment in the south and ~2% in the north is reflected in the chemical and isotopic composition of the Lesser Antilles arc magmas. Sulfides in these magma- derived cumulates record the earliest stages of magma evolution and are a more faithful monitor of the sulfur isotopic composition of the magma source region in the mantle than erupting lavas. We hypothesize that the decrease in terrigenous sediment being subducted from the south to north will be reflected in the S isotopes in cumulate samples. Samples of mafic and ultramafic cumulates have been collected from fourteen islands across the Lesser Antilles arc. Primary rock types are olivine gabbro, amphibole gabbro, plagioclase gabbro, and olivine gabbronorite. Sulfide minerals include pyrite, chalcopyrite, and pyrrhotite, and typically occur as spherical blebs. Sulfides are found primarily as inclusions in clinopyroxene, amphibole, olivine, and plagioclase. Sulfides occur less frequently as inclusions in magnetite and within the matrix. Analyses of sulfur isotopes in cumulate sulfides are currently underway. The decrease in the amount sediment being subducted from south to north in the Lesser Antilles arc should result in δ34S values that increase from south to north (more sediment subducted = more negative δ34S values). 
    more » « less
  3. Abstract Talc-rich metasomatic rocks in subduction interface shear zones profoundly influence seismicity and arc magmatism, but their petrogenesis remains controversial. Magnesium isotope compositions of exhumed subduction interface rocks from the Catalina Schist (California, USA) record Mg exchange from ultramafic to crustal rocks. Preferential loss of isotopically light Mg from serpentinite produces isotopically heavy talc-rich metasomatic rocks. Addition of this isotopically light Mg to adjacent metasedimentary and metamafic rocks from the slab produces actinolite- and chlorite-rich metasomatic rocks, respectively, with convergent δ26Mg values relative to their protoliths. The addition of Ca to ultramafic- and metasedimentary-derived metasomatic rocks reflects a separate contribution from infiltrating metabasalt-derived fluids. Talc-rich rocks are formed by passive enrichment of Si in serpentinite during Mg loss to adjacent Mg sinks. These results and a global compilation of exhumed paleosubduction terranes suggest that talc is a common component of the subduction interface and often forms independent of Si metasomatism. Talc is likely prevalent along the interface from mantle wedge corner to subarc wherever ultramafic material is in contact with a Mg sink and where it could influence slow slip events, subduction interface rheology, and arc magmatism in modern subduction zones. 
    more » « less
  4. null (Ed.)
    The surfaces of rocky planets are mostly covered by basaltic crust, but Earth is unique in that it also has extensive regions of felsic crust, manifested in the form of continents. Exactly how felsic crust forms when basaltic magmas are the dominant products of melting the mantles of rocky planets is unclear. A fundamental part of the debate is centered on the low Nb/Ta of Earth’s continental crust (11–13) compared to basalts (15–16). Here, we show that during arc magma differentiation, the extent of Nb/Ta fractionation varies with crustal thickness with the lowest Nb/Ta seen in continental arc magmas. Deep arc cumulates (arclogites) are found to have high Nb/Ta (average ~19) due to the presence of high Nb/Ta magmatic rutiles. We show that the crustal thickness control of Nb/Ta can be explained by rutile saturation being favored at higher pressures. Deep-seated magmatic differentiation, such as in continental arcs and other magmatic orogens, is thus necessary for making continents. 
    more » « less
  5. Porphyry Cu ± Mo ± Au and iron oxide-apatite (IOA) deposits rarely occur in spatial and temporal proximity in Phanerozoic arc-related settings, and the formation of these mineral deposit types in an evolving arc setting remains poorly understood. Specifically, the roles of magma composition and the tectonic regime remain the subject of some debate. Here, we systematically estimated the P-T-fO2 conditions and H2O-S-Cl contents for dioritic to granodioritic source magmas for porphyry and skarn Cu ± Au (150–135 Ma) and IOA deposits (~130 Ma) that formed in transpressional and transtensional settings in the Middle-Lower Yangtze River metallogenic belt, China. Our estimates show that, compared to IOA deposits, the porphyry- and skarn-related magmas were relatively felsic, cooler, and more hydrous. These geochemical features are consistent with the tectonic transition from subduction to slab rollback of the paleo-Pacific plate in the East Asia continental margin at <135 Ma and concomitant crustal extension and steepening of the regional geothermal gradient. Apatite data reveal that the silicate melts associated with the porphyry and skarn Cu ± Au and IOA deposits had comparable predegassed S concentrations (~0.13 ± 0.06 wt % vs. ~0.16 ± 0.09 wt % on average), but that IOA-related melts contained higher predegassed Cl/H2O ratios (~0.11 ± 0.03 vs. ~0.04 ± 0.03 for porphyry- and skarn-related magmas) that decreased by one order of magnitude after magmatic degassing. Magmatic fO2 estimated using zircon and amphibole, reported in log units relative to the fayalite-magnetite-quartz (FMQ) redox buffer, gradually increased during cooling of the porphyry- and skarn-related magmas (ΔFMQ +0.7 to +2.5) at 950° to 800°C and decreased to ΔFMQ +1 at 700°C owing to fractionation of Fe2+-rich minerals and subsequent S degassing, respectively. In contrast, the magmatic fO2 values for the IOA-related source magmas varied significantly from ΔFMQ –1.5 to ΔFMQ +2.5 but generally show an increasing trend with cooling from 970° to 700°C that probably resulted from variable degrees of evaporite assimilation, fractionation of Fe2+-rich minerals, and Cl degassing. These results are consistent with the hypothesis that Cl enrichment of the IOA-related source magmas played a determinant role in their formation. We propose that the porphyry and skarn Cu ± Au deposits in the Middle-Lower Yangtze River metallogenic belt formed in a transpressional setting in response to paleo-Pacific flat-slab subduction that favored storage and evolution of S-rich hydrous ore-forming magmas at variable crustal levels. A subsequent extensional setting formed due to slab rollback, leading to rapid degassing of Cl-rich IOA-related magmas. For the latter scenario, assimilation of evaporite by mafic to intermediate magmas would lead to an enrichment of Cl in the predegassed magmas and subsequent exsolution of hypersaline magmatic-hydrothermal fluid enriched in Fe as FeCl2. This Fe-rich ore fluid efficiently transported Fe to the apical parts of the magma bodies and overlying extensional normal faults where IOA mineralization was localized. The concomitant loss of S, H2O, and Cu with Cl by volcanic outgassing may have inhibited sulfide mineralization at lower temperatures. 
    more » « less