skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neurosymbolic Programming for Science
Neurosymbolic Programming (NP) techniques have the potential to accelerate scientific discovery. These models combine neural and symbolic components to learn complex patterns and representations from data, using high-level concepts or known constraints. NP techniques can interface with symbolic domain knowledge from scientists, such as prior knowledge and experimental context, to produce interpretable outputs. We identify opportunities and challenges between current NP models and scientific workflows, with real-world examples from behavior analysis in science: to enable the use of NP broadly for workflows across the natural and social sciences.  more » « less
Award ID(s):
1918839
PAR ID:
10404349
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Neurips 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In social science, formal and quantitative models, ranging from ones that describe economic growth to collective action, are used to formulate mechanistic explanations of the observed phenomena, provide predictions, and uncover new research questions. Here, we demonstrate the use of a machine learning system to aid the discovery of symbolic models that capture non-linear and dynamical relationships in social science datasets. By extending neuro-symbolic methods to find compact functions and differential equations in noisy and longitudinal data, we show that our system can be used to discover interpretable models from real-world data in economics and sociology. Augmenting existing workflows with symbolic regression can help uncover novel relationships and explore counterfactual models during the scientific process. We propose that this AI-assisted framework can bridge parametric and non-parametric models commonly employed in social science research by systematically exploring the space of non-linear models and enabling fine-grained control over expressivity and interpretability. 
    more » « less
  2. Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility. 
    more » « less
  3. Abstract Large language models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 32 total projects developed during the second annual LLM hackathon for applications in materials science and chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility. 
    more » « less
  4. This paper presents a conversational pipeline for crafting domain knowledge for complex neuro-symbolic models through natural language prompts. It leverages large language models to generate declarative programs in the DomiKnowS framework. The programs in this framework express concepts and their relationships as a graph in addition to logical constraints between them. The graph, later, can be connected to trainable neural models according to those specifications. Our proposed pipeline utilizes techniques like dynamic in-context demonstration retrieval, model refinement based on feedback from a symbolic parser, visualization, and user interaction to generate the tasks’ structure and formal knowledge representation. This approach empowers domain experts, even those not well-versed in ML/AI, to formally declare their knowledge to be incorporated in customized neural models in the DomiKnowS framework. 
    more » « less
  5. Recent techniques that integrate solver layers into Deep Neural Networks (DNNs) have shown promise in bridging a long-standing gap between inductive learning and symbolic reasoning techniques. In this paper we present a set of techniques for integrating Satisfiability Modulo Theories (SMT) solvers into the forward and backward passes of a deep network layer, called SMTLayer. Using this approach, one can encode rich domain knowledge into the network in the form of mathematical formulas. In the forward pass, the solver uses symbols produced by prior layers, along with these formulas, to construct inferences; in the backward pass, the solver informs updates to the network, driving it towards representations that are compatible with the solver’s theory. Notably, the solver need not be differentiable. We implement SMTLayer as a Pytorch module, and our empirical results show that it leads to models that 1) require fewer training samples than conventional models, 2) that are robust to certain types of covariate shift, and 3) that ultimately learn representations that are consistent with symbolic knowledge, and thus naturally interpretable. 
    more » « less