skip to main content

Title: Plating and Stripping Calcium Metal in Potassium Hexafluorophosphate Electrolyte toward a Stable Hybrid Solid Electrolyte Interphase
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Applied Energy Materials
Page Range / eLocation ID:
p. 3924-3932
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-voltage lithium-metal batteries (LMBs) with LiCoO 2 (LCO) as the cathode have high volumetric and gravimetric energy densities. However, it remains a challenge for stable cycling of LCO >4.5 V Li . Here we demonstrate that a rationally designed sulfonamide-based electrolyte can greatly improve the cycling stability at high voltages up to 4.7 V Li by stabilizing the electrode–electrolyte interfaces (EEIs) on both the Li-metal anode (LMA) and high-voltage LCO cathode. With the sulfonamide-based electrolyte, commercial LCO cathodes retain 89% and 85% of their capacities after 200 and 100 cycles under high charging voltages of 4.55 V Li and 4.6 V Li , respectively, significantly outperforming traditional carbonate-based electrolytes. The surface degradation, impedance growth, and detrimental side reactions in terms of gas evolution and Co dissolution are well suppressed. Our work demonstrates a promising strategy for designing new electrolytes to realize high-energy Li||LCO batteries. 
    more » « less
  2. The all-solid-state battery is a promising alternative to conventional lithium-ion batteries that have reached the limit of their technological capabilities. The next-generation lithium-ion batteries are expected to be eco-friendly, long-lasting, and safe while demonstrating high energy density and providing ultrafast charging. These much-needed properties require significant efforts to uncover and utilize the chemical, morphological, and electrochemical properties of solid-state electrolytes and cathode nanocomposites. Here we report solid-state electrochemical cells based on lithium oxyhalide electrolyte that is produced by melt-casting. This method results in enhanced cathode/electrolyte interfaces that allow exceptionally high charging rates (>4000C) while maintaining the electrochemical stability of solid-state electrolyte in the presence of lithium metal anode and lithium iron phosphate-based cathode. The cells exhibit long cycle life (>1800 cycles at 100 °C) and offer a promising route to the next-generation all-solid-state battery technology. 
    more » « less
  3. Abstract

    The 3D nanocomposite structure of plated lithium (LiMetal) and solid electrolyte interphases (SEI), including a polymer‐rich surficial passivation layer (SEI exoskeleton) and inorganic SEI “fossils” buried inside amorphous Li matrix, is resolved using cryogenic transmission electron microscopy. With ether‐based DOLDME‐LiTFSI electrolyte, LiF and Li2O nanocrystals are formed and embedded in a thin but tough amorphous polymer in the SEI exoskeleton. The fast Li‐stripping directions are along or , which produces eight exposed {111} planes at halfway charging. Full Li stripping produces completely sagging, empty SEI husks that can sustain large bending and buckling, with the smallest bending radius of curvature observed approaching tens of nanometers without apparent damage. In the 2nd round of Li plating, a thin LiBCCsheet first nucleates at the current collector, extends to the top end of the deflated SEI husk, and then expands its thickness. The apparent zero wetting angle between LiBCCand the SEI interior means that the heterogeneous nucleation energy barrier is zero. Due to its complete‐wetting property and chemo‐mechanical stability, the SEI largely prevents further reactions between the Li metal and the electrolyte, which explains the superior performance of Li‐metal batteries with ether‐based electrolytes. However, uneven refilling of the SEI husks results in dendrite protrusions and some new SEI formation during the 2nd plating. A strategy to form bigger SEI capsules during the initial cycle with higher energy density than the following cycles enables further enhanced Coulombic efficiency to above 99%.

    more » « less