skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HiFi chromosome-scale diploid assemblies of the grape rootstocks 110R, Kober 5BB, and 101–14 Mgt
Abstract Cultivated grapevines are commonly grafted on closely related species to cope with specific biotic and abiotic stress conditions. The three North American Vitis species V. riparia , V. rupestris , and V. berlandieri , are the main species used for breeding grape rootstocks. Here, we report the diploid chromosome-scale assembly of three widely used rootstocks derived from these species: Richter 110 (110R), Kober 5BB, and 101–14 Millardet et de Grasset (Mgt). Draft genomes of the three hybrids were assembled using PacBio HiFi sequences at an average coverage of 53.1 X-fold. Using the tool suite HaploSync, we reconstructed the two sets of nineteen chromosome-scale pseudomolecules for each genome with an average haploid genome size of 494.5 Mbp. Residual haplotype switches were resolved using shared-haplotype information. These three reference genomes represent a valuable resource for studying the genetic basis of grape adaption to biotic and abiotic stresses, and designing trait-associated markers for rootstock breeding programs.  more » « less
Award ID(s):
1741627
PAR ID:
10404512
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Data
Volume:
9
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It remains a major challenge to identify the genes and mutations that lead to plant sexual differentiation. Here, we study the structure and evolution of the sex-determining region (SDR) inVitisspecies. We report an improved, chromosome-scale Cabernet Sauvignon genome sequence and the phased assembly of nine wild and cultivated grape genomes. By resolving twentyVitisSDR haplotypes, we compare male, female, and hermaphrodite haplotype structures and identify sex-linked regions. Coupled with gene expression data, we identify a candidate male-sterility mutation in theVviINP1gene and potential female-sterility function associated with the transcription factorVviYABBY3. Our data suggest that dioecy has been lost during domestication through a rare recombination event between male and female haplotypes. This work significantly advances the understanding of the genetic basis of sex determination inVitisand provides the information necessary to rapidly identify sex types in grape breeding programs. 
    more » « less
  2. Haplotype-level allelic characterization facilitates research on the functional, evolutionary and breeding-related features of extremely large and complex plant genomes. We report a 21.7-Gb chromosome-level haplotype-resolved assembly in Pinus densiflora. We found genome rearrangements involving translocations and inversions between chromosomes 1 and 3 of Pinus species and a proliferation of specific long terminal repeat (LTR) retrotransposons (LTR-RTs) in P. densiflora. Evolutionary analyses illustrated that tandem and LTR-RT-mediated duplications led to an increment of transcription factor (TF) genes in P. densiflora. The haplotype sequence comparison showed allelic imbalances, including presence–absence variations of genes (PAV genes) and their functional contributions to flowering and abiotic stress-related traits in P. densiflora. Allele-aware resequencing analysis revealed PAV gene diversity across P. densiflora accessions. Our study provides insights into key mechanisms underlying the evolution of genome structure, LTR-RTs and TFs within the Pinus lineage as well as allelic imbalances and diversity across P. densiflora. 
    more » « less
  3. Harris, T (Ed.)
    Abstract Potato is a key food crop with a complex, polyploid genome. Advancements in sequencing technologies coupled with improvements in genome assembly algorithms have enabled generation of phased, chromosome-scale genome assemblies for cultivated tetraploid potato. The SpudDB database houses potato genome sequence and annotation, with the doubled monoploid DM 1–3 516 R44 (hereafter DM) genome serving as the reference genome and haplotype. Diverse annotation data types for DM genes are provided through a suite of Gene Report Pages including gene expression profiles across 438 potato samples. To further annotate potato genes based on expression, 65 gene co-expression modules were constructed that permit the identification of tightly co-regulated genes within DM across development and responses to wounding, abiotic stress, and biotic stress. Genome browser views of DM and 28 other potato genomes are provided along with a download page for genome sequence and annotation. To link syntenic genes within and between haplotypes, syntelogs were identified across 25 cultivated potato genomes. Through access to potato genome sequences and associated annotations, SpudDB can enable potato biologists, geneticists, and breeders to continue to improve this key food crop. 
    more » « less
  4. Abstract Background Introgressive hybridization can reassort genetic variants into beneficial combinations, permitting adaptation to new ecological niches. To evaluate evolutionary patterns and dynamics that contribute to introgression, we investigate six wild Vitis species that are native to the Southwestern United States and useful for breeding grapevine ( V. vinifera ) rootstocks. Results By creating a reference genome assembly from one wild species, V. arizonica , and by resequencing 130 accessions, we focus on identifying putatively introgressed regions (pIRs) between species. We find six species pairs with signals of introgression between them, comprising up to ~ 8% of the extant genome for some pairs. The pIRs tend to be gene poor, located in regions of high recombination and enriched for genes implicated in disease resistance functions. To assess potential pIR function, we explore SNP associations to bioclimatic variables and to bacterial levels after infection with the causative agent of Pierce’s disease ( Xylella fastidiosa ). pIRs are enriched for SNPs associated with both climate and bacterial levels, suggesting that introgression is driven by adaptation to biotic and abiotic stressors. Conclusions Altogether, this study yields insights into the genomic extent of introgression, potential pressures that shape adaptive introgression, and the evolutionary history of economically important wild relatives of a critical crop. 
    more » « less
  5. Sharakhov, Igor V. (Ed.)
    Rubus idaeus L. (red raspberry), is a perennial woody plant species of the Rosaceae family that is widely cultivated in the temperate regions of world and is thus an economically important soft fruit species. It is prized for its flavour and aroma, as well as a high content of healthful compounds such as vitamins and antioxidants. Breeding programs exist globally for red raspberry, but variety development is a long and challenging process. Genomic and molecular tools for red raspberry are valuable resources for breeding. Here, a chromosome-length genome sequence assembly and related gene predictions for the red raspberry cultivar ‘Anitra’ are presented, comprising PacBio long read sequencing scaffolded using Hi-C sequence data. The assembled genome sequence totalled 291.7 Mbp, with 247.5 Mbp (84.8%) incorporated into seven sequencing scaffolds with an average length of 35.4 Mbp. A total of 39,448 protein-coding genes were predicted, 75% of which were functionally annotated. The seven chromosome scaffolds were anchored to a previously published genetic linkage map with a high degree of synteny and comparisons to genomes of closely related species within the Rosoideae revealed chromosome-scale rearrangements that have occurred over relatively short evolutionary periods. A chromosome-level genomic sequence of R . idaeus will be a valuable resource for the knowledge of its genome structure and function in red raspberry and will be a useful and important resource for researchers and plant breeders. 
    more » « less