skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of Blood Flow on Cardiac Morphogenesis and Formation of Congenital Heart Defects
Congenital heart disease (CHD) affects about 1 in 100 newborns and its causes are multifactorial. In the embryo, blood flow within the heart and vasculature is essential for proper heart development, with abnormal blood flow leading to CHD. Here, we discuss how blood flow (hemodynamics) affects heart development from embryonic to fetal stages, and how abnormal blood flow solely can lead to CHD. We emphasize studies performed using avian models of heart development, because those models allow for hemodynamic interventions, in vivo imaging, and follow up, while they closely recapitulate heart defects observed in humans. We conclude with recommendations on investigations that must be performed to bridge the gaps in understanding how blood flow alone, or together with other factors, contributes to CHD.  more » « less
Award ID(s):
2109918 2109959
PAR ID:
10404558
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Cardiovascular Development and Disease
Volume:
9
Issue:
9
ISSN:
2308-3425
Page Range / eLocation ID:
303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hypertrophic cardiomyopathy (HCM) is a congenital heart disease characterized by thickening of the heart’s left ventricle (LV) wall that can lead to cardiac dysfunction and heart failure. Ventricular wall thickening affects the motion of cardiac walls and blood flow within the heart. Because abnormal cardiac blood flow in turn could lead to detrimental remodeling of heart walls, aberrant ventricular flow patterns could exacerbate HCM progression. How blood flow patterns are affected by hypertrophy and inter-patient variability is not known. To address this gap in knowledge, we present here strategies to generate personalized computational fluid dynamics (CFD) models of the heart LV from patient cardiac magnetic resonance (cMR) images. We performed simulations of CFD LV models from three cases (one normal, two HCM). CFD computations solved for blood flow velocities, from which flow patterns and the energetics of flow within the LV were quantified. We found that, compared to a normal heart, HCM hearts exhibit anomalous flow patterns and a mismatch in the timing of energy transfer from the LV wall to blood flow, as well as changes in kinetic energy flow patterns. While our results are preliminary, our presented methodology holds promise for in-depth analysis of HCM patient hemodynamics in clinical practice. 
    more » « less
  2. ImportanceNeurodevelopmental outcomes for children with congenital heart defects (CHD) have improved minimally over the past 20 years. ObjectivesTo assess the feasibility and tolerability of maternal progesterone therapy as well as the magnitude of the effect on neurodevelopment for fetuses with CHD. Design, Setting, and ParticipantsThis double-blinded individually randomized parallel-group clinical trial of vaginal natural progesterone therapy vs placebo in participants carrying fetuses with CHD was conducted between July 2014 and November 2021 at a quaternary care children’s hospital. Participants included maternal-fetal dyads where the fetus had CHD identified before 28 weeks’ gestational age and was likely to need surgery with cardiopulmonary bypass in the neonatal period. Exclusion criteria included a major genetic or extracardiac anomaly other than 22q11 deletion syndrome and known contraindication to progesterone. Statistical analysis was performed June 2022 to April 2024. InterventionParticipants were 1:1 block-randomized to vaginal progesterone or placebo by diagnosis: hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and other CHD diagnoses. Treatment was administered twice daily between 28 and up to 39 weeks’ gestational age. Main Outcomes and MeasuresThe primary outcome was the motor score of the Bayley Scales of Infant and Toddler Development-III; secondary outcomes included language and cognitive scales. Exploratory prespecified subgroups included cardiac diagnosis, fetal sex, genetic profile, and maternal fetal environment. ResultsThe 102 enrolled fetuses primarily had HLHS (n = 52 [50.9%]) and TGA (n = 38 [37.3%]), were more frequently male (n = 67 [65.7%]), and without genetic anomalies (n = 61 [59.8%]). The mean motor score differed by 2.5 units (90% CI, −1.9 to 6.9 units;P = .34) for progesterone compared with placebo, a value not statistically different from 0. Exploratory subgroup analyses suggested treatment heterogeneity for the motor score for cardiac diagnosis (Pfor interaction = .03) and fetal sex (Pfor interaction = .04), but not genetic profile (Pfor interaction = .16) or maternal-fetal environment (Pfor interaction = .70). Conclusions and RelevanceIn this randomized clinical trial of maternal progesterone therapy, the overall effect was not statistically different from 0. Subgroup analyses suggest heterogeneity of the response to progesterone among CHD diagnosis and fetal sex. Trial RegistrationClinicalTrials.gov Identifier:NCT02133573 
    more » « less
  3. In the United States, heart disease is the leading cause of death, killing about 695,000 people each year. Myocardial infarction (MI) is a cardiac complication which occurs when blood flow to a portion of the heart decreases or halts, leading to damage in the heart muscle. Heart failure and Atrial fibrillation (AF) are closely associated with MI. Heart failure is a common complication of MI and a risk factor for AF. Machine learning (ML) and deep learning techniques have shown potential in predicting cardiovascular conditions. However, developing a sim- plified predictive model, along with a thorough feature analysis, is challenging due to various factors, including lifestyle, age, family history, medical conditions, and clinical variables for cardiac complications prediction. This paper aims to develop simplified models with comprehensive feature analysis and data preprocessing for predicting cardiac complications, such as heart failure and atrial fibrillation linked with MI, using a publicly available dataset of myocardial infarction patients. This will help the students and health care professionals understand various factors responsible for cardiac complications through a simplified workflow. By prioritizing interpretability, this paper illustrates how simpler models, like decision trees and logistic regression, can provide transparent decision-making processes while still maintaining a balance with accuracy. Additionally, this paper examines how age-specific factors affect heart failure and atrial fibrillation conditions. Overall this research focuses on making machine learning accessible and interpretable. Its goal is to equip students and non-experts with practical tools to understand how ML can be applied in healthcare, particularly for the cardiac complications prediction for patients having MI. 
    more » « less
  4. Novel cloth face masks to mitigate the spread of COVID-19 have been developed and tested for particle (0.1 μm in size) filtration efficiency, bacterial filtration efficiency, breathability, leakage, heart rate, and blood oxygen level, and then compared with the available N95 masks and surgical masks. It was found that this novel mask had better filtration efficiency than that of surgical masks and was very close to that of N95 masks. The breathability was also improved and was in the range of the designated levels for barrier face coverings. The flow visualization technique was utilized to study the leakage of the mask and it was found to have significantly lower leakage as compared to surgical masks. Heart rate and blood oxygen level tests were performed by wearing the mask during 10-minute walking sessions and it was found that wearing the mask did not adversely affect heart rate or blood oxygen levels or add any other strain on the wearer. It is believed that this novel face mask would reduce the spread of COVID-19 as well as provide an environmentally and economically conscious alternative to the N95 respirators for the public. The mask developed in this study can be washed, reused, and therefore worn for longer periods of time. 
    more » « less
  5. The immune and circulatory systems of animals are functionally integrated. In mammals, the spleen and lymph nodes filter and destroy microbes circulating in the blood and lymph, respectively. In insects, immune cells that surround the heart valves (ostia), called periostial haemocytes, destroy pathogens in the areas of the body that experience the swiftest haemolymph (blood) flow. An infection recruits additional periostial haemocytes, amplifying heart-associated immune responses. Although the structural mechanics of periostial haemocyte aggregation have been defined, the genetic factors that regulate this process remain less understood. Here, we conducted RNA sequencing in the African malaria mosquito, Anopheles gambiae , and discovered that an infection upregulates multiple components of the immune deficiency (IMD) and c-Jun N-terminal kinase (JNK) pathways in the heart with periostial haemocytes. This upregulation is greater in the heart with periostial haemocytes than in the circulating haemocytes or the entire abdomen. RNA interference-based knockdown then showed that the IMD and JNK pathways drive periostial haemocyte aggregation and alter phagocytosis and melanization on the heart, thereby demonstrating that these pathways regulate the functional integration between the immune and circulatory systems. Understanding how insects fight infection lays the foundation for novel strategies that could protect beneficial insects and harm detrimental ones. 
    more » « less