skip to main content


Title: Effect of Blood Flow on Cardiac Morphogenesis and Formation of Congenital Heart Defects
Congenital heart disease (CHD) affects about 1 in 100 newborns and its causes are multifactorial. In the embryo, blood flow within the heart and vasculature is essential for proper heart development, with abnormal blood flow leading to CHD. Here, we discuss how blood flow (hemodynamics) affects heart development from embryonic to fetal stages, and how abnormal blood flow solely can lead to CHD. We emphasize studies performed using avian models of heart development, because those models allow for hemodynamic interventions, in vivo imaging, and follow up, while they closely recapitulate heart defects observed in humans. We conclude with recommendations on investigations that must be performed to bridge the gaps in understanding how blood flow alone, or together with other factors, contributes to CHD.  more » « less
Award ID(s):
2109918 2109959
NSF-PAR ID:
10404558
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Cardiovascular Development and Disease
Volume:
9
Issue:
9
ISSN:
2308-3425
Page Range / eLocation ID:
303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hypertrophic cardiomyopathy (HCM) is a congenital heart disease characterized by thickening of the heart’s left ventricle (LV) wall that can lead to cardiac dysfunction and heart failure. Ventricular wall thickening affects the motion of cardiac walls and blood flow within the heart. Because abnormal cardiac blood flow in turn could lead to detrimental remodeling of heart walls, aberrant ventricular flow patterns could exacerbate HCM progression. How blood flow patterns are affected by hypertrophy and inter-patient variability is not known. To address this gap in knowledge, we present here strategies to generate personalized computational fluid dynamics (CFD) models of the heart LV from patient cardiac magnetic resonance (cMR) images. We performed simulations of CFD LV models from three cases (one normal, two HCM). CFD computations solved for blood flow velocities, from which flow patterns and the energetics of flow within the LV were quantified. We found that, compared to a normal heart, HCM hearts exhibit anomalous flow patterns and a mismatch in the timing of energy transfer from the LV wall to blood flow, as well as changes in kinetic energy flow patterns. While our results are preliminary, our presented methodology holds promise for in-depth analysis of HCM patient hemodynamics in clinical practice. 
    more » « less
  2. Importance

    Neurodevelopmental outcomes for children with congenital heart defects (CHD) have improved minimally over the past 20 years.

    Objectives

    To assess the feasibility and tolerability of maternal progesterone therapy as well as the magnitude of the effect on neurodevelopment for fetuses with CHD.

    Design, Setting, and Participants

    This double-blinded individually randomized parallel-group clinical trial of vaginal natural progesterone therapy vs placebo in participants carrying fetuses with CHD was conducted between July 2014 and November 2021 at a quaternary care children’s hospital. Participants included maternal-fetal dyads where the fetus had CHD identified before 28 weeks’ gestational age and was likely to need surgery with cardiopulmonary bypass in the neonatal period. Exclusion criteria included a major genetic or extracardiac anomaly other than 22q11 deletion syndrome and known contraindication to progesterone. Statistical analysis was performed June 2022 to April 2024.

    Intervention

    Participants were 1:1 block-randomized to vaginal progesterone or placebo by diagnosis: hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and other CHD diagnoses. Treatment was administered twice daily between 28 and up to 39 weeks’ gestational age.

    Main Outcomes and Measures

    The primary outcome was the motor score of the Bayley Scales of Infant and Toddler Development-III; secondary outcomes included language and cognitive scales. Exploratory prespecified subgroups included cardiac diagnosis, fetal sex, genetic profile, and maternal fetal environment.

    Results

    The 102 enrolled fetuses primarily had HLHS (n = 52 [50.9%]) and TGA (n = 38 [37.3%]), were more frequently male (n = 67 [65.7%]), and without genetic anomalies (n = 61 [59.8%]). The mean motor score differed by 2.5 units (90% CI, −1.9 to 6.9 units;P = .34) for progesterone compared with placebo, a value not statistically different from 0. Exploratory subgroup analyses suggested treatment heterogeneity for the motor score for cardiac diagnosis (Pfor interaction = .03) and fetal sex (Pfor interaction = .04), but not genetic profile (Pfor interaction = .16) or maternal-fetal environment (Pfor interaction = .70).

    Conclusions and Relevance

    In this randomized clinical trial of maternal progesterone therapy, the overall effect was not statistically different from 0. Subgroup analyses suggest heterogeneity of the response to progesterone among CHD diagnosis and fetal sex.

    Trial Registration

    ClinicalTrials.gov Identifier:NCT02133573

     
    more » « less
  3. Patients' longitudinal biomarker changing patterns are crucial factors for their disease progression. In this research, we apply functional principal component analysis techniques to extract these changing patterns and use them as predictors in landmark models for dynamic prediction. The time‐varying effects of risk factors along a sequence of landmark times are smoothed by a supermodel to borrow information from neighbor time intervals. This results in more stable estimation and more clear demonstration of the time‐varying effects. Compared with the traditional landmark analysis, simulation studies show our proposed approach results in lower prediction error rates and higher area under receiver operating characteristic curve (AUC) values, which indicate better ability to discriminate between subjects with different risk levels. We apply our method to data from the Framingham Heart Study, using longitudinal total cholesterol (TC) levels to predict future coronary heart disease (CHD) risk profiles. Our approach not only obtains the overall trend of biomarker‐related risk profiles, but also reveals different risk patterns that are not available from the traditional landmark analyses. Our results show that high cholesterol levels during young ages are more harmful than those in old ages. This demonstrates the importance of analyzing the age‐dependent effects of TC on CHD risk.

     
    more » « less
  4. Abstract

    Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in theβ‐globingene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.

     
    more » « less
  5. Gravity is one of the most ubiquitous environmental effects on living systems: Cellular and organismal responses to gravity are of central importance to understanding the physiological function of organisms, especially eukaryotes. Gravity has been demonstrated to have strong effects on the closed cardiovascular systems of terrestrial vertebrates, with rapidly responding neural reflexes ensuring proper blood flow despite changes in posture. Invertebrates possess open circulatory systems, which could provide fewer mechanisms to restrict gravity effects on blood flow, suggesting that these species also experience effects of gravity on blood pressure and distribution. However, whether gravity affects the open circulatory systems of invertebrates is unknown, partly due to technical measurement issues associated with small body size. Here we used X-ray imaging, radio-tracing of hemolymph, and micropressure measurements in the American grasshopper,Schistocerca americana, to assess responses to body orientation. Our results show that during changes in body orientation, gravity causes large changes in blood and air distribution, and that body position affects ventilation rate. Remarkably, we also found that insects show similar heart rate responses to body position as vertebrates, and contrasting with the classic understanding of open circulatory systems, have flexible valving systems between thorax and abdomen that can separate pressures. Gravitational effects on invertebrate cardiovascular and respiratory systems are likely to be widely distributed among invertebrates and to have broad influence on morphological and physiological evolution.

     
    more » « less