skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can "Conscious Data Contribution" Help Users to Exert "Data Leverage" Against Technology Companies?
Tech users currently have limited ability to act on concerns regarding the negative societal impacts of large tech companies. However, recent work suggests that users can exert leverage using their role in the generation of valuable data, for instance by withholding their data contributions to intelligent technologies. We propose and evaluate a new means to exert this type of leverage against tech companies: "conscious data contribution" (CDC). Users who participate in CDC exert leverage against a target tech company by contributing data to technologies operated by a competitor of that company. Using simulations, we find that CDC could be highly effective at reducing the gap in intelligent technologies performance between an incumbent and their competitors. In some cases, just 20% of users contributing data they have produced to a small competitor could help that competitor get 80% of the way towards the original company's best-case performance. We discuss the implications of CDC for policymakers, tech designers, and researchers.  more » « less
Award ID(s):
1815507
PAR ID:
10404667
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
5
Issue:
CSCW1
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent privacy laws have strengthened data subjects’ right to access personal data collected by companies. Prior work has found that data exports companies provide consumers in response to Data Subject Access Requests (DSARs) can be overwhelming and hard to understand. To identify directions for improving the user experience of data exports, we conducted an online study in which 33 participants explored their own data from Amazon, Facebook, Google, Spotify, or Uber. Participants articulated questions they hoped to answer using the exports. They also annotated parts of the data they found confusing, creepy, interesting, or surprising. While participants hoped to learn either about their own usage of the platform or how the company collects and uses their personal data, these questions were often left unanswered. Participants’ annotations documented their excitement at finding data records that triggered nostalgia, but also shock about the privacy implications of other data they saw. Having examined their data, many participants hoped to request the company erase some, but not all, of the data. We discuss opportunities for future transparency-enhancing tools and enhanced laws. 
    more » « less
  2. Recent privacy laws have strengthened data subjects' right to access personal data collected by companies. Prior work has found that data exports companies provide consumers in response to Data Subject Access Requests (DSARs) can be overwhelming and hard to understand. To identify directions for improving the user experience of data exports, we conducted an online study in which 33 participants explored their own data from Amazon, Facebook, Google, Spotify, or Uber. Participants articulated questions they hoped to answer using the exports. They also annotated parts of the export they found confusing, creepy, interesting, or surprising. While participants hoped to learn either about their own usage of the platform or how the company collects and uses their personal data, these questions were often left unanswered. Participants' annotations documented their excitement at finding data records that triggered nostalgia, but also shock and anger about the privacy implications of other data they saw. Having examining their data, many participants hoped to request the company erase some, but not all, of the data. We discuss opportunities for future transparency-enhancing tools and enhanced laws. 
    more » « less
  3. The public is increasingly concerned about the practices of large technology companies with regards to privacy and many other issues. To force changes in these practices, there have been growing calls for “data strikes.” These new types of collective action would seek to create leverage for the public by starving business-critical models (e.g. recommender systems, ranking algorithms) of much-needed training data. However, little is known about how data strikes would work, let alone how effective they would be. Focusing on the important commercial domain of recommender systems, we simulate data strikes under a wide variety of conditions and explore how they can augment traditional boycotts. Our results suggest that data strikes can be effective and that users have more power in their relationship with technology companies than they do with other companies. However, our results also highlight important trade-offs and challenges that must be considered by potential organizers. 
    more » « less
  4. For enhanced performance and privacy, companies deploying voice-activated technologies such as virtual assistants and robots are increasingly tending toward designs in which technologies only begin attending to speech once a specified wakeword is heard. Due to concerns that interactions with such technologies could lead users, especially children, to develop impolite habits, some companies have begun to develop use modes in which interactants are required to use ostensibly polite wakewords such as " Please''. In this paper, we argue that these ``please-centering'' wakewords are likely to backfire and actually discourage polite interactions due to the particular types of lexical and syntactic priming induced by those wakewords. We then present the results of a human-subject experiment (n=90) that validates those claims. 
    more » « less
  5. Patient-generated health data (PGHD), created and captured from patients via wearable devices and mobile apps, are proliferating outside of clinical settings. Examples include sleep tracking, fitness trackers, continuous glucose monitors, and RFID-enabled implants, with many additional biometric or health surveillance applications in development or envisioned. These data are included in growing stockpiles of personal health data being mined for insight via big data analytics and artificial intelligence/deep learning technologies. Governing these data resources to facilitate patient care and health research while preserving individual privacy and autonomy will be challenging, as PGHD are the least regulated domains of digitalized personal health data (U.S. Department of Health and Human Services, 2018). When patients themselves collect digitalized PGHD using “apps” provided by technology firms, these data fall outside of conventional health data regulation, such as HIPAA. Instead, PGHD are maintained primarily on the information technology infrastructure of vendors, and data are governed under the IT firm’s own privacy policies and within the firm’s intellectual property rights. Dominant narratives position these highly personal data as valuable resources to transform healthcare, stimulate innovation in medical research, and engage individuals in their health and healthcare. However, ensuring privacy, security, and equity of benefits from PGHD will be challenging. PGHD can be aggregated and, despite putative “deidentification,” be linked with other health, economic, and social data for predictive analytics. As large tech companies enter the healthcare sector (e.g., Google Health is partnering with Ascension Health to analyze the PHI of millions of people across 21 U.S. states), the lack of harmonization between regulatory regimes may render existing safeguards to preserve patient privacy and control over their PHI ineffective. While healthcare providers are bound to adhere to health privacy laws, Big Tech comes under more relaxed regulatory regimes that will facilitate monetizing PGHD. We explore three existing data protection regimes relevant to PGHD in the United States that are currently in tension with one another: federal and state health-sector laws, data use and reuse for research and innovation, and industry self-regulation by large tech companies We then identify three types of structures (organizational, regulatory, technological/algorithmic), which synergistically could help enact needed regulatory oversight while limiting the friction and economic costs of regulation. This analysis provides a starting point for further discussions and negotiations among stakeholders and regulators to do so. 
    more » « less