skip to main content


Title: Byssal thread attachment and growth are not correlated across gradients of temperature and food availability for two congeneric mussel species
Anthropogenic warming and natural climate variability affect global patterns of seawater temperature and marine primary productivity and affect organism survival, growth, and physiology. Mussels are ecosystem engineers that utilize byssal thread structures to attach to hard substrate, a strategy key to survival in wave-swept rocky shore environments. Byssal thread production varies according to season and environmental conditions, and temperature and food availability may influence the production of these structures by affecting energy limitation. Mytilus trossulus and M. galloprovincialis are congeneric mussel species in the Northeast Pacific with cold- and warm-adapted thermal tolerances, respectively. First, we hypothesized that temperature has opposing effects on growth rates of the 2 species. Second, we hypothesized that either (1) byssal thread production is positively correlated with growth rate (the ‘production’ hypothesis), or (2) there is a trade-off between growth and byssal thread production, and resources are allocated first to byssal thread production rather than growth. Under this ‘trade-off’ hypothesis, we predicted no relationship between growth rate and byssal thread production. We manipulated seawater temperature and food availability and quantified mussel performance in terms of survival, growth, and byssus attachment. Across all treatment combinations, we found that M. galloprovincialis had positive shell and tissue growth and M. trossulus had minimal shell growth and a loss in tissue mass. Temperature had opposing effects on each species; temperature increased shell growth of M. galloprovincialis but increased tissue loss of M. trossulus . Temperature did not affect byssal thread production, and there was no significant relationship between byssal thread quality or quantity and shell or tissue growth across the temperature and food gradient for either species. Our results suggest that energy allocation is prioritized towards byssal thread production over growth.  more » « less
Award ID(s):
2050273 1041213
NSF-PAR ID:
10404689
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
704
ISSN:
0171-8630
Page Range / eLocation ID:
35 to 54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis

    Organisms rely on the integrity of the structural materials they produce to maintain a broad range of processes, such as acquiring food, resisting predators, or withstanding extreme environmental forces. The production and maintenance of these biomaterials, which are often modulated by environmental conditions, can therefore have important consequences for fitness in changing climates. One well-known example of such a biomaterial is mussel byssus, an array of collagen-like fibers (byssal threads) that tethers a bivalve mollusk securely to benthic marine substrates. Byssus strength directly influences mortality from dislodgement, predation, or competition and depends on the quantity and quality of byssal threads produced. We compared the temperature sensitivity of byssal attachment strength of two mussel species common to the west coast of North America, Mytilus trossulus and M. galloprovincialis, when exposed to seawater temperatures ranging from 10 to 24°C in the laboratory. We found that the two species attached equally strong in seawater ≤18°C, but higher temperatures caused byssal thread production rate and quality (break force and extensibility) to be greatly reduced in M. trossulus and increased in M. galloprovincialis, leading to a 2–10-fold difference in overall byssus strength between the two species. Using this threshold value (18°C), we mapped habitat for each species along the west coast of North America based on annual patterns in sea surface temperature. Estimated ranges are consistent with the current distribution of the two species and suggest a potential mechanism by which ocean warming could facilitate the northern expansion of M. galloprovincialis and displacement of native M. trossulus populations.

     
    more » « less
  2. Summary

    Distinct survival strategies can result from trade‐offs in plant function under contrasting environments. Investment in drought resistance mechanisms can enhance survivorship but result in conservative growth. We tested the hypothesis that the widespread oaks (Quercusspp.) of the Americas exhibit an interspecific trade‐off between drought resistance and growth capacity.

    Using experimental water treatments, we isolated adaptive trait associations among species in relation to their broad climates of origin and tested for correlated evolution between plant functional responses to water availability and habitat.

    Across all lineages, oaks displayed plastic drought responses – typically acclimating through osmolyte accumulation in leaves and/or employing conservative growth. Oaks from xeric climates had higher osmolytes and reduced stomatal pore area index, which allows for moderated gas exchange and limits tissue loss.

    Patterns suggest drought resistance strategies are convergent and under strong adaptive pressure. Leaf habit, however, mediates the growth and drought resistance strategies of oaks. Deciduous species, and evergreen species from xeric climates, have increased drought tolerance through osmoregulation, which allows for continuous, conservative growth. Evergreen mesic species show limited drought resistance but could enhance growth under well‐watered conditions. Consequently, evergreen species from mesic environments are especially vulnerable to chronic drought and climate change.

     
    more » « less
  3. The Gulf of Maine is a highly productive and economically important region in the northwestern Atlantic that has undergone rapid warming in recent decades and is susceptible to ocean acidification (OA). These stressors may have substantial impacts on local fisheries. Therefore, understanding the combined effects of warming and OA to commercially important shellfish is vital. To test responses to warming and OA, Mercenaria mercenaria (hard clam), Mya arenaria (soft-shell clam), Plactopectin magellanicus (sea scallop), and both juvenile and adult Arctica islandica (ocean quahog) were grown in flowing seawater tanks for 20.5 weeks in controlled pH (7.4, 7.6, 7.8 or 8.0 (ambient) ± 0.02) and temperature (6, 9 or 12 ± 0.56 °C) conditions at Bowdoin College’s Schiller Coastal Studies Center. The specimens’ diet was supplemented with high-quality food (Shellfish Diet) throughout the experiment. Temperature effects were a significant contributor in all shell growth metrics (maximum height, dry weight and buoyant weight) in all species except the height and dry weight of adult A. islandica. Additionally, pH effects were significant in the height of M. mercenaria and in the dry weight of juvenile A. islandica samples. Overall, mortality rates ranged from 1.5% in juvenile A. islandica to 24% in M. mercenaria, with results varying by species and treatment conditions. Additionally, differences in final shell condition were noted among the various treatments indicating that, although most of the organisms survived and grew, the elevated temperature and/or lower pH conditions might not have been ideal for thriving. Considering all results of growth and survival, the four species showed a differential response to the same warming and acidification conditions. As suggested by prior research, the availability of high-quality food may allow certain species to tolerate the future warming and/or OA conditions modeled in this experiment. Experimental results may reveal the species-specific resiliency of economically valuable shellfish to changing ocean conditions as well as guide future planning to safeguard regional ecosystems and fisheries. 
    more » « less
  4. Griffen, Blaine D. (Ed.)
    Ocean acidification (OA) represents a serious challenge to marine ecosystems. Laboratory studies addressing OA indicate broadly negative effects for marine organisms, particularly those relying on calcification processes. Growing evidence also suggests OA combined with other environmental stressors may be even more deleterious. Scaling these laboratory studies to ecological performance in the field, where environmental heterogeneity may mediate responses, is a critical next step toward understanding OA impacts on natural communities. We leveraged an upwelling-driven pH mosaic along the California Current System to deconstruct the relative influences of pH, ocean temperature, and food availability on seasonal growth, condition and shell thickness of the ecologically dominant intertidal mussel Mytilus californianus. In 2011 and 2012, ecological performance of adult mussels from local and commonly sourced populations was measured at 8 rocky intertidal sites between central Oregon and southern California. Sites coincided with a large-scale network of intertidal pH sensors, allowing comparisons among pH and other environmental stressors. Adult California mussel growth and size varied latitudinally among sites and inter-annually, and mean shell thickness index and shell weight growth were reduced with low pH. Surprisingly, shell length growth and the ratio of tissue to shell weight were enhanced, not diminished as expected, by low pH. In contrast, and as expected, shell weight growth and shell thickness were both diminished by low pH, consistent with the idea that OA exposure can compromise shell-dependent defenses against predators or wave forces. We also found that adult mussel shell weight growth and relative tissue mass were negatively associated with increased pH variability. Including local pH conditions with previously documented influences of ocean temperature, food availability, aerial exposure, and origin site enhanced the explanatory power of models describing observed performance differences. Responses of local mussel populations differed from those of a common source population suggesting mussel performance partially depended on genetic or persistent phenotypic differences. In light of prior research showing deleterious effects of low pH on larval mussels, our results suggest a life history transition leading to greater resilience in at least some performance metrics to ocean acidification by adult California mussels. Our data also demonstrate “hot” (more extreme) and “cold” (less extreme) spots in both mussel responses and environmental conditions, a pattern that may enable mitigation approaches in response to future changes in climate. 
    more » « less
  5. Abstract

    Climate‐modulated parasitism is driven by a range of factors, yet the spatial and temporal variability of this relationship has received scant attention in wild vertebrate hosts. Moreover, most prior studies overlooked the intraspecific differences across host morphotypes, which impedes a full understanding of the climate–parasitism relationship. In the common lizard (Zootoca vivipara), females exhibit three colour morphs: yellow (Y‐females), orange (O‐females) and mixed (mixture of yellow and orange, M‐females).Zootoca viviparais also infested with an ectoparasite (Ophionyssusmites). We therefore used this model system to examine the intraspecific response of hosts to parasitism under climate change. We found infestation probability to differ across colour morphs at both spatial (10 sites) and temporal (20 years) scales: M‐females had lower parasite infestations than Y‐ and O‐females at lower temperatures, but became more susceptible to parasites as temperature increased. The advantage of M‐females at low temperatures was counterbalanced by their higher mortality rates thereafter, which suggests a morph‐dependent trade‐off between resistance to parasites and host survival. Furthermore, significant interactions between colour morphs and temperature indicate that the relationship between parasite infestations and climate warming was contingent on host morphotypes. Parasite infestations increased with temperature for most morphs, but displayed morph‐specific rates. Finally, infested M‐females had higher reductions in survival rates than infested Y‐ or O‐females, which implies a potential loss of intraspecific diversity within populations as parasitism and temperatures rise. Overall, we found parasitism increases with warming temperatures, but this relationship is modulated by host morphotypes and an interaction with temperature. We suggest that epidemiological models incorporate intraspecific diversity within species for better understanding the dynamics of wildlife diseases under climate warming.

     
    more » « less