skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Deanonymization of Mixing Services in Bitcoin
Bitcoin transactions are pseudonymous, which means that even when addresses or addresses can be connected to one another, it is really hard to connect them with outside entities. On top of that, there has been a proliferation of bitcoins mixing sites in recent years. These sites operate mostly on the dark web, and their main mission is to launder bitcoins by making vast amounts of complicated transactions with them and to make their association with a single owner even harder. Our mission is to make that distinction easier. In this paper, we plan to introduce two novel heuristics. Our OI heuristic is designed to parse blockchain data in a way where we only receive information we deem is of interest. We introduce HOLO, which aims to taint bitcoin addresses in reference to a fixed output. We also visualize the blockchain and our heuristic in an easily digestible manner.  more » « less
Award ID(s):
2051127
PAR ID:
10404756
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Global Emerging Technologies Blockchain (GET Blockchain)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Blockchain relies on the underlying peer-to-peer (p2p) networking to broadcast and get up-to-date on the blocks and transactions. It is therefore imperative to have high p2p connectivity for the quality of the blockchain system operations. High p2p networking connectivity ensures that a peer node is connected to multiple other peers providing a diverse set of observers of the current state of the blockchain and transactions. However, in a permissionless blockchain network, using the peer identifiers—including the current approach of counting the number of distinct IP addresses and port numbers—can be ineffective in measuring the number of peer connections and estimating the networking connectivity. Such current approach is further challenged by the networking threats manipulating the identifiers. We build a robust estimation engine for the p2p networking connectivity by sensing and processing the p2p networking traffic. We implement a working Bitcoin prototype connected to the Bitcoin Mainnet to validate and improve our engine’s performances and evaluate the estimation accuracy and cost efficiency of our estimation engine. 
    more » « less
  2. Blockchain relies on the underlying peer-to-peer (P2P) networking to broadcast and get up-to-date on the blocks and transactions. Because of the blockchain operations’ reliance on the information provided by P2P networking, it is imperative to have high P2P connectivity for the quality of the blockchain system operations and performances. High P2P networking connectivity ensures that a peer node is connected to multiple other peers providing a diverse set of observers of the current state of the blockchain and transactions. However, in a permissionless Bitcoin cryptocurrency network, using the peer identifiers – including the current approach of counting the number of distinct IP addresses and port numbers – can be ineffective in measuring the number of peer connections and estimating the networking connectivity. Such current approach is further challenged by the networking threats manipulating identities. We build a robust estimation engine for the P2P networking connectivity by sensing and processing the P2P networking traffic. We take a systematic approach to study our engine and analyze the followings: the different components of the connectivity estimation engine and how they affect the accuracy performances, the role and the effectiveness of an outlier detection to enhance the connectivity estimation, and the engine’s interplay with the Bitcoin protocol. We implement a working Bitcoin prototype connected to the Bitcoin mainnet to validate and improve our engine’s performances and evaluate the estimation accuracy and cost efficiency of our connectivity estimation engine. Our results show that our scheme effectively counters the identity-manipulations threats, achieves 96.4% estimation accuracy with a tolerance of one peer connection, and is lightweight in the overheads in the mining rate, thus making it appropriate for the miner deployment. 
    more » « less
  3. Cryptocurrency is designed for anonymous financial transactions to avoid centralized control, censorship, and regulations. To protect anonymity in the underlying P2P networking, Bitcoin adopts and supports anonymous routing of Tor, I2P, and CJDNS. We analyze the networking performances of these anonymous routing with the focus on their impacts on the blockchain consensus protocol. Compared to non-anonymous routing, anonymous routing adds inherent-by-design latency performance costs due to the additions of the artificial P2P relays. However, we discover that the lack of ecosystem plays an even bigger factor in the performances of the anonymous routing for cryptocurrency blockchain. I2P and CJDNS, both advancing the anonymous routing beyond Tor, in particular lack the ecosystem of sizable networking-peer participation. I2P and CJDNS thus result in the Bitcoin experiencing networking partitioning, which has traditionally been researched and studied in cryptocurrency/blockchain security. We focus on I2P and Tor and compare them with the non-anonymous routing because CJDNS has no active public peers resulting in no connectivity. Tor results in slow propagation while I2P yields soft partition, which is a partition effect long enough to have a substantial impact in the PoW mining. To better study and identify the latency and the ecosystem factors of the cryptocurrency networking and consensus costs, we study the behaviors both in the connection manager (directly involved in the P2P networking) and the address manager (informing the connection manager of the peer selections on the backend). This paper presents our analyses results to inform the state of cryptocurrency blockchain with anonymous routing and discusses future work directions and recommendations to resolve the performance and partition issues. 
    more » « less
  4. <italic>Abstract</italic> Cryptocurrencies and the underpinning blockchain technology have gained unprecedented public attention recently. In contrast to fiat currencies, transactions of cryptocurrencies, such as Bitcoin and Litecoin, are permanently recorded on distributed ledgers to be seen by the public. As a result, public availability of all cryptocurrency transactions allows us to create a complex network of financial interactions that can be used to study not only the blockchain graph, but also the relationship between various blockchain network features and cryptocurrency risk investment. We introduce a novel concept of chainlets, or blockchain motifs, to utilize this information. Chainlets allow us to evaluate the role of local topological structure of the blockchain on the joint Bitcoin and Litecoin price formation and dynamics. We investigate the predictive Granger causality of chainlets and identify certain types of chainlets that exhibit the highest predictive influence on cryptocurrency price and investment risk. More generally, while statistical aspects of blockchain data analytics remain virtually unexplored, the paper aims to highlight various emerging theoretical, methodological and applied research challenges of blockchain data analysis that will be of interest to the broad statistical community.The Canadian Journal of Statistics48: 561–581; 2020 © 2020 Statistical Society of Canada 
    more » « less
  5. null (Ed.)
    Abstract Cryptocurrencies play a major role in the global financial ecosystem. Their presence across different geopolitical corridors, including in repressive regimes, has been one of their striking features. In this work, we leverage this feature for bootstrapping Censorship Resistant communication. We conceptualize the notion of stego-bootstrapping scheme and its security in terms of rareness and security against chosencovertext attacks. We present MoneyMorph , a provably secure stego-bootstrapping scheme using cryptocurrencies. MoneyMorph allows a censored user to interact with a decoder entity outside the censored region, through blockchain transactions as rendezvous, to obtain bootstrapping information such as a censorshipresistant proxy and its public key. Unlike the usual bootstrapping approaches (e.g., emailing) with heuristic security, if any, MoneyMorph employs public-key steganography over blockchain transactions to ensure provable cryptographic security. We design rendezvous over Bitcoin, Zcash, Monero, and Ethereum, and analyze their effectiveness in terms of available bandwidth and transaction cost. With its highly cryptographic structure, we show that Zcash provides 1148 byte bandwidth per transaction costing less than 0.01 USD as fee. 
    more » « less