Fluent coordination is important in order for teams to work well together. In proximate teaming scenarios, fluent teams tend to perform more successfully. Recent work suggests robots can support fluency in human-robot teams a number of ways, including using nonverbal cues and anticipating human intention. However, this area of research is still in its early stages. We identify some of the key challenges in this research space, specifically individual variations during teaming, knowledge and task transfer, co-training prior to task execution, and long-term interactions. We then discuss possible paths forward, including leveraging human adaptability, to promote more fluent teaming.
more »
« less
Analyzing the Fluency of Human-Robot Interactions
Fluency---described as the ``coordinated meshing of joint activities between members of a well-synchronized team''---is essential to human-robot team success. Human teams achieve fluency through rich, often mostly implicit, communication. A key challenge in bridging the gap between industry and academia is understanding what influences human perception of a fluent team experience to better optimize human-robot fluency in industrial environments. This paper addresses this challenge by developing an online experiment featuring videos that vary the timing of human and robot actions to influence perceived team fluency. Our results support three broad conclusions. First, we did not see differences across most subjective fluency measures. Second, people report interactions as more fluent as teammates stay more active. Third, reducing delays when humans' tasks depend on robots increases perceived team fluency.
more »
« less
- Award ID(s):
- 1651822
- PAR ID:
- 10404887
- Date Published:
- Journal Name:
- AAAI 2023 Spring Symposium on HRI in Academia and Industry: Bridging the Gap
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human-robot teaming is becoming increasingly common within manufacturing processes. A key aspect practitioners need to decide on when developing effective processes is the level of task interdependence between human and robot team members. Task interdependence refers to the extent to which one’s behavior affects the performance of others in a team. In this work, we examine the effects of three levels of task interdependence—pooled, sequential, reciprocalin human-robot teaming on human worker’s mental states, task performance, and perceptions of the robot. Participants worked with the robot in an assembly task while their heart rate variability was being recorded. Results suggested human workers in the reciprocal interdependence level experienced less stress and perceived the robot more as a collaborator than other two levels. Task interdependence did not affect perceived safety. Our findings highlight the importance of considering task structure in human-robot teaming and inform future research on and industry practices for human-robot task allocation.more » « less
-
The human-robot interaction (HRI) field has rec- ognized the importance of enabling robots to interact with teams. Human teams rely on effective communication for suc- cessful collaboration in time-sensitive environments. Robots can play a role in enhancing team coordination through real-time assistance. Despite significant progress in human-robot teaming research, there remains an essential gap in how robots can effectively communicate with action teams using multimodal interaction cues in time-sensitive environments. This study addresses this knowledge gap in an experimental in-lab study to investigate how multimodal robot communication in action teams affects workload and human perception of robots. We explore team collaboration in a medical training scenario where a robotic crash cart (RCC) provides verbal and non-verbal cues to help users remember to perform iterative tasks and search for supplies. Our findings show that verbal cues for object search tasks and visual cues for task reminders reduce team workload and increase perceived ease of use and perceived usefulness more effectively than a robot with no feedback. Our work contributes to multimodal interaction research in the HRI field, highlighting the need for more human-robot teaming research to understand best practices for integrating collaborative robots in time-sensitive environments such as in hospitals, search and rescue, and manufacturing applications.more » « less
-
We explore task tolerances, i.e., allowable position or rotation inaccuracy, as an important resource to facilitate smooth and effective telemanipulation. Task tolerances provide a robot flexibility to generate smooth and feasible motions; however, in teleoperation, this flexibility may make the user’s control less direct. In this work, we implemented a telema- nipulation system that allows a robot to autonomously adjust its configuration within task tolerances. We conducted a user study comparing a telemanipulation paradigm that exploits task tolerances (functional mimicry) to a paradigm that requires the robot to exactly mimic its human operator (exact mimicry), and assess how the choice in paradigm shapes user experience and task performance. Our results show that autonomous adjustments within task tolerances can lead to performance improvements without sacrificing perceived control of the robot. Additionally, we find that users perceive the robot to be more under control, predictable, fluent, and trustworthy in functional mimicry than in exact mimicry.more » « less
-
Team member inclusion is vital in collaborative teams. In this work, we explore two strategies to increase the inclusion of human team members in a human-robot team: 1) giving a person in the group a specialized role (the 'robot liaison') and 2) having the robot verbally support human team members. In a human subjects experiment (N = 26 teams, 78 participants), groups of three participants completed two rounds of a collaborative task. In round one, two participants (ingroup) completed a task with a robot in one room, and one participant (outgroup) completed the same task with a robot in a different room. In round two, all three participants and one robot completed a second task in the same room, where one participant was designated as the robot liaison. During round two, the robot verbally supported each participant 6 times on average. Results show that participants with the robot liaison role had a lower perceived group inclusion than the other group members. Additionally, when outgroup members were the robot liaison, the group was less likely to incorporate their ideas into the group's final decision. In response to the robot's supportive utterances, outgroup members, and not ingroup members, showed an increase in the proportion of time they spent talking to the group. Our results suggest that specialized roles may hinder human team member inclusion, whereas supportive robot utterances show promise in encouraging contributions from individuals who feel excluded.more » « less
An official website of the United States government

